首先用模型推理sft数据,之后计算zero-shot score 将增加one-shot的prompt,之后再推理,计算one-shot score 通过两次score计算出差值 = golden score 最终取top k的score的样本作为golden subset 这种思想其实在prompt + RAG 的玩法里很常见:类似于有个examples的池子,之后通过输入的样本,动态的通过RAG选择最相似的examp...
为了“多快好省”地通往炼丹之路,炼丹师们开始研究 Zero-shot Learning / One-shot Learning / Few-shot Learning。 爱上一匹野马 (泛化能力),可我的家里没有草原 (海量数据) 。 Learning类型 分为: Zero-shot Learning、One-shot Learning、Few-shot Learning、传统 Learning 。 Zero-shot Learning Zero-shot...
它们仅通过输入输出示例(也称为“shots”),就能学习新任务。然而,LLM的上下文窗口(即它们每次处理的...
one-shot学习的发展为计算机视觉领域带来了许多潜在应用。例如,在人脸识别领域,one-shot学习可以帮助识别未在训练集中出现的人脸。在物体检测和图像分类领域,one-shot学习可以使模型更好地适应新的物体类别,而无需大量标记样本。 少样本学习(Few-Shot Learning)方法原理 最后要介绍的学习方法是少样本学习(Few-Shot Lea...
one shot旨在使模型能够仅通过极少量的样本(在极端情况下,只有一个样本)来学习识别新的类别或任务。这与传统的深度学习方法形成鲜明对比,后者通常需要大量标注数据来训练模型。one shot底层的原理包括几个方面:1. 元学习Meta-Learning,或称为“学会学习”,在这种方法中,模型被训练为快速适应新任务或新数据。它不是...
One-shot learning 指的是我们在训练样本很少,甚至只有一个的情况下,依旧能做预测。 如何做到呢?可以在一个大数据集上学到general knowledge(具体的说,也可以是X->Y的映射),然后再到小数据上有技巧的update。 相关的名词还有 transfer learning , domain adaption。 其实Zero/One-shot learning都属于transfer learni...
Zero-shot learning 就是希望我们的模型能够对其从没见过的类别进行分类,让机器具有推理能力,实现真正的智能。其中零次(Zero-shot)是指对于要分类的类别对象,一次也不学习。 1.2 实例 假设我们的模型已经能够识别马、老虎和熊猫了,现在需要该模型也识别斑马,那么我们需要告诉模型,怎样的对象才是斑马,但是并不能直接让...
下图是 in-context learning (左边一列)和一般 fine-tuning (右边一列)的区别,in-context learning 不产生梯度、不会更新模型参数,而 fine-tuning 会产生梯度、更新模型参数。 需要注意区分 in-context learning 中可以有 Zero-Shot、One-Shot 和 Few-Shot 的 Setting,但和 Zero-Shot learning、One-Shot learnin...
Zero-shot learning 就是希望我们的模型能够对其从没见过的类别进行分类,让机器具有推理能力,实现真正的智能。其中零次(Zero-shot)是指对于要分类的类别对象,一次也不学习。 1.2 实例 假设我们的模型已经能够识别马、老虎和熊猫了,现在需要该模型也识别斑马,那么我们需要告诉模型,怎样的对象才是斑马,但是并不能直接让...
Zero-shot learning 就是希望我们的模型能够对其从没见过的类别进行分类,让机器具有推理能力,实现真正的智能。其中零次(Zero-shot)是指对于要分类的类别对象,一次也不学习。 1.2 实例 假设我们的模型已经能够识别马、老虎和熊猫了,现在需要该模型也识别斑马,那么我们需要告诉模型,怎样的对象才是斑马,但是并不能直接让...