1. 在OpenMP 3.0中,可以利用collapse指令来解决循环嵌套问题,如: #pragma omp parallel for collapse(2)for(int y=0; y<25;++y){ for(int x=0; x<80;++x) { tick(x,y); }}12345678 1. collapse指令传递的数字就代表了循环嵌套的深度,这里为2层。 在OpenMP 2.5中,我们可以通过将多层循环改为单层...
} 子语句:private(列表)firstprivate(列表)lastprivate(l列表)reduction(运算符:列表)schedule(伊⨚[,⧦⮶⺞])collapse(n)ordered nowait sections将多个语句块和合并起来形成一个并行区域。#pragma omp sections[子语句[[,]子语句]...]{ [#pragma omp section { 将要被并行执行的语句块 } ][#pragma ...
#pragma omp parallel for collapse(2) for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { // 循环体代码 } } ``` 上述代码将并行执行`n`乘以`m`次迭代。注意,当使用`collapse`子句时,循环的边界条件和迭代计算必须能够在一个单一的循环迭代中完成。 通过控制循环的边界条...
假设我嵌套了ocde循环,如下所示: for(int c=0;c<3;c++){ for(int h=0;h<227;h++){在内部bs index or loop.Adding的外部bs index or loop.Adding #pragmaompparallel for collapse(2)上添加#pragmaomp 浏览1提问于2021-05-25得票数1 回答已采纳 ...
private(列表)firstprivate(列表)lastprivate( l列表)reduction( 运算符: 列表)schedule( 伊⨚[, ⧦⮶⺞])collapse( n)orderednowaitsections将多个语句块和合并起来形成一个并行区域。#pragmaompsections[子语句[[,] 子语句]...]{[#pragmaompsection{将要被并行执行的语句块}][#pragmaompsection{将要被...
!$omp parallel do collapse(2) private(L, K, J, LH, LB, KB, KH, JB) schedule(dynamic, 1) DO L=1, M, NB DO K = 1, N, NB LH = MIN(M, L + NB - 1) LB = LH - L + 1 KB = MIN ( NB, N - K + 1) KH = K + KB - 1 IF ( BETA .EQ. ZERO )...
解決済み: Code A below has 4 OMP TARGET regions. !$OMP TARGET DEFAULTMAP(present: allocatable) !$OMP TEAMS DISTRIBUTE PARALLEL DO COLLAPSE(2) DO II=1,N_W
collapse(n)1 Specifies the number of loops that theomp simddirective applies to. The expression that is represented bynmust be a constant positive integer expression. If the collapse clause is not specified, theomp simddirective applies to only the loop that immediately follows. ...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
of this extended formalism, when compared to the conventional form of the TOV equations, is the presence of an additional repulsive term—due to quantum corrections originated by the phenomenon of quantum vacuum polarization—that can withstand, under certain conditions, the gravitational collapse. Alth...