数据仓库Data warehouse(可简写为DW或者DWH)建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。目前行业比较流行:AWS Redshift,Greenplum,Hive等。 数据仓库并不是数据的最终目的地,而是为数据最终的目的地做好准备,这...
Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。 数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。目前行业比较...
AI检测代码解析 importmatplotlib.pyplotasplt# 数据分析示例analysis_query="SELECT product, SUM(sales_amount) as total_sales FROM sales_data_dw GROUP BY product"analysis_df=pd.read_sql(analysis_query,data_warehouse_engine)# 可视化plt.figure(figsize=(10,6))plt.bar(analysis_df['product'],analysis_...
明细数据层(DWD,Data Warehouse Detail):以业务过程作为建模驱动,基于每个具体的业务过程特点,构建最细粒度的明细事实表。可将某些重要属性字段做适当冗余,也即宽表化处理。汇总数据层(DWS,Data Warehouse Summary):以分析的主题对象作为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标表。以...
DM(Data Mart) 数据集市,为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据。面向应用。 数据仓库 数据仓库(Data Warehouse) 简称DW,顾名思义,数据仓库是一个很大的数据存储集合,出于企业的分析性报告和决策支持目的而创建,对多样的业务数据进行筛选与整合。它为企业提供...
02 数仓层(DW,data warehouse) 数据仓库层(DW)层:数据仓库层是我们在做数据仓库时要核心设计的一层,本层将从 ODS 层中获得的数据按照主题建立各种数据模型,每一个主题对应一个宏观的分析领域,数据仓库层排除对决策无用的数据,提供特定主题的简明视图。在DW层会保存BI系统中所有的历史数据,例如保存10年的数据。
DWD:data warehouse details 数据明细层。主要对ODS数据层做一些数据清洗和规范化的操作。 数据清洗:去除空值、脏数据、枚举值转换,超过极限范围的。 DWB:data warehouse base 数据基础层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层。
DM(Data Mart):数据集市,以某个业务应用为出发点而建立的局部DW,DW只关心自己需要的数据,不会全盘考虑企业整体的数据架构和应用,每个应用有自己的DM。 DM(Data Mining):数据挖掘,又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的...
02 数仓层(DW,data warehouse) 数据仓库层(DW)层:数据仓库层是我们在做数据仓库时要核心设计的一层,本层将从 ODS 层中获得的数据按照主题建立各种数据模型,每一个主题对应一个宏观的分析领域,数据仓库层排除对决策无用的数据,提供特定主题的简明视图。在DW层会保存BI系统中所有的历史数据,例如保存10年的数据。
在现代数据管理领域,数据仓库(Data Warehouse)是企业进行数据分析与决策的重要工具。数据仓库通常由多个层次构成,其中EDW(企业数据仓库,Enterprise Data Warehouse)层和ODS(操作数据存储,Operational Data Store)层是两个核心层次。本文将探讨这两者之间的区别及其在数据处理过程中的作用,并附上示例代码和流程图。 ODS层...