OCR(Optical Character Recognition,光学字符识别)是指对图像进行分析识别处理,获取文字和版面信息的过程,是典型的计算机视觉任务,通常由文本检测和文本识别两个子任务构成。 文字检测:将图片中的文字区域位置检测出来(如图1(b)所示); 文字识别:对文字区域中的文字进行识别(如图1(c)所示)。 OCR发展历程 早在60、70...
在训练阶段CRNN将特征图像统一缩放到w×32,而在测试阶段对于输入的图片拉伸会导致识别率降低。CRNN保持输入图像尺寸比例,但是图像的高度h必须统一为32,卷积特征图的尺寸动态决定了LSTM的时序长度(时间步长)。 CRNN OCR文本识别模型以其独特的架构和卓越的性能,在图像文本识别领域展现出了强大的生命力和应用潜力。随着...
本文简要介绍OCR常见落地的算法模型-DBNet、CRNN,并基于这两个模型,简单介绍文字识别在表格识别中参与的角色;并且额外介绍TrOCR这个端到端的模型,基于这个模型引入公式识别解析的思路及微调方法。 DBNet DBNet是一种基于分割的文本检测算法,算法将可微分二值化模块(Differentiable Binarization)引入了分割模型,使得模型能够...
CRNN(Convolutional Recurrent Neural Network,卷积循环神经网络)是一种在OCR(Optical Character Recognition,光学字符识别)领域广泛使用的深度学习模型,特别适用于文本序列的识别,如手写体识别、场景文本识别等。CRNN结合了卷积神经网络(CNN)和循环神经网络(RNN)的优点,能够有效地处理图像中的序列数据。在信息爆炸的时代,...
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN 对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。 端到端 OCR 识别的难点在于怎么处理不定长序列对齐的问题!OCR 可建模为时序依赖的文本图像问题,然后使用 CTC(Connectionist Temporal Classification...
以TensorFlow LSTM CTC OCR项目为例,该项目通过构建CNN-LSTM-CTC模型,实现了对图像中文字的识别。具体步骤包括数据准备、模型构建、训练与评估等。通过运行项目中的train.py脚本,可以开始模型的训练过程;而run_inference.py脚本则用于执行推理任务,对输入图像进行文字识别。 三、CRNN详解 3.1 CRNN结构 CRNN(Convolution...
【基于pytorch的OCR文字识别】CTPN、CRNN、卷积3D、PyTorch框架一次学完!学完就能跑通!-AI/人工智能/深度学习/pytorch共计15条视频,包括:1. OCR文字识别要完成的任务、2. CTPN文字检测网络概述、3. 序列网络的作用等,UP主更多精彩视频,请关注UP账号。
CRNN是一种结合了卷积神经网络(CNN)和循环神经网络(RNN)的模型,专门用于OCR任务。它首先通过CNN提取图像中的特征,然后利用RNN处理序列数据,最后通过转录层将RNN的输出转换成最终的文本识别结果。 优点: 端到端训练,简化了模型流程。 能够处理任意长度的输入序列。 挑战: 计算复杂度高,需要大量计算资源。 处理长序列...
2025年最容易上手的计算机视觉项目:OCR文字识别实战教程!CTPN、CRNN、卷积3D、PyTorch框架一次学完!学完就能跑通!!——人工智能|AI共计15条视频,包括:1-整体流程演示、2-文档轮廓提取、1-Python环境配置等,UP主更多精彩视频,请关注UP账号。
简介:【OCR学习笔记】9、OCR中文项目综合实践(CTPN+CRNN+CTC Loss原理讲解)(一) OCR——简介 文字识别也是图像领域一个常见问题。然而,对于自然场景图像,首先要定位图像中的文字位置,然后才能进行文字的识别。 所以一般来说,从自然场景图片中进行文字识别,需要包括2个步骤: ...