nvcc属于CUDA的编译器,将程序编译成可执行的二进制文件,nvidia-smi全称是NVIDIA System Management Interface,是一种命令行实用工具,旨在帮助管理和监控NVIDIA GPU设备。 CUDA有runtime api和driver api,两者都有对应的CUDA版本, nvcc --version 显示的就是前者对应的CUDA版本,而 nvidia-smi显示的是后者对应的CUDA版本。
nvcc属于CUDA的编译器,将程序编译成可执行的二进制文件。 nvidia-smi帮助管理和监控NVIDIA GPU设备。 nvcc显示的是CUDA的runtime api, 由CUDA Toolkit installer安装。nvidia-smi显示的是driver api。 pytorch版本选择 在选择pytorch版本的时候,指定的CUDA版本对应的command是cudatoolkit,因此应该选择nvcc -V的版本号。
搜了一下大概意思就是我安装的dgl的cuda版本和我自己的cuda版本不匹配,然后一顿搜索以后,又找到了 nvcc --version这个命令,显示出来的cuda版本竟然是9.1 所以,此时的情况是:nvidia-smi和nvcc --version出来的版本不一致,这主要是因为,CUDA有两个主要的API:runtime(运行时) API和driver API。关于这两个具体的区别...
nvidia-smi的结果除了有GPU驱动版本型号,还有CUDA Driver API的型号,而nvcc得结果对应CUDA Runtime API。 遇到两者不一致问题,我们可以查看 docs.nvidia.com/cuda/cu 确定版本是否兼容。 如果不兼容,解决方案是更改Runtime API,具体方法是安装对应Driver API版本的cuda。 (实名diss tf, 用pytorch就没遇见过这个问题!
51CTO博客已为您找到关于nvidia-smi和nvcc-V的cuda版本不一致的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及nvidia-smi和nvcc-V的cuda版本不一致问答内容。更多nvidia-smi和nvcc-V的cuda版本不一致相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人
背景 为何nvidia-smi 中的CUDA 版本与 nvcc不一致: 从上述结果可以看出,nvidia-smi的结果显示CUDA版本是10.0,而从nvcc命令来看,却是CUDA 9.0 分析 其实是因为CUDA 有两种API,分别是 运行时 API 和 驱动API,即所谓的 Runtime API 与 Driver API。 nvidia-smi 的结果除了有 GPU 驱动版本型号,还有 CU... ...
nvcc属于CUDA的编译器,将程序编译成可执行的二进制文件,nvidia-smi全称是NVIDIA System Management Interface,是一种命令行实用工具,旨在帮助管理和监控NVIDIA GPU设备。 CUDA有runtime api和driver api,两者都有对应的CUDA版本, nvcc --version 显示的就是前者对应的CUDA版本,而 nvidia-smi显示的是后者对应的CUDA版本...
nvidia-smi 和 nvcc 结果的版本为何不一致 背景 为何nvidia-smi 中的CUDA 版本与 nvcc不一致: 从上述结果可以看出,nvidia-smi的结果显示CUDA版本是10.0,而从nvcc命令来看,却是CUDA 9.0 分析 其实是因为CUDA 有两种API,分别是 运行时 API 和 驱动API,即所谓的 Runtime API 与 Driver API。 nvidia-smi 的结果...
参考文章:jianshu.com/p/eb5335708 总结就是: nvcc --version 是由CUDA toolkit installer安装的关于runtime api的文件 nvidia-smi是由GPU driver installer安装的,关于driver api的文件 在安装pytorch的时候,选择与nvcc 版本一致的torch sudo ln -s 可以用于添加软链接 ...
nvcc -V显示的CUDA版本与nvidia-smi显示的CUDA版本不一致?,看到这篇文章,大概意思是说CUDA有两种API,一个是驱动API(DriverVersion),依赖NVIDIA驱动,由nvidia-smi查看;另一个是运行API(RuntimeVersion)是软件运行所需要的。一般驱动API版本>=运行API版本即可。具体