double', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj...
array([[ 8, 14, 1, 8], [11, 4, 9, 4], [ 1, 13, 13, 11]])A.reshape(-1) ---array([ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11]) 19、expand_dims 它用于扩展数组的维度。 arr = np.array([ 8, 14, 1, 8, 11, 4, 9, 4, 1, 13, 13, 11])np.expand_...
a = np.array([1, 2, 3, 4, 6])b = np.array([1, 4, 9, 4, 36])np.setxor1d(a,b)---array([ 2, 3, 6, 9, 36]) 34、合并 numpy.union1d(ar1, ar2) Union1d函数将两个数组合并为一个。 a = np.array([1, 2, 3, 4, 5])b = np...
def ravel(self, order=None): # real signature unknown; restored from __doc__ """ a.ravel([order]) Return a flattened array. Refer to `numpy.ravel` for full documentation. See Also --- numpy.ravel : equivalent function ndarray.flat : a flat iterator on the array. """ 1. 2. 3....
np.array([1,2,3,4,5])---array([1,2,3,4,5,6]) 复制 还可以使用此函数将pandas的df和series转为NumPy数组。 sex=pd.Series(['Male','Male','Female'])np.array(sex)---array(['Male','Male','Female'],dtype=object) 复制 2、Linspace 创建一个具有指定间隔的浮点数的数组...
a = np.array([[1,2,3],[4,5,6]]) # 从现有的数组当中创建 a1 = np.array(a) # 相当于索引的形式,并没有真正的创建一个新的 a2 = np.asarray(a) 2.1、关于array和asarray的不同 3、创建固定范围的数组 np.linspace (start, stop, num, endpoint, retstep, dtype) ...
Converting heterogeneous NumPy array to DataFrame We can also create a DataFrame from a NumPy array that contains heterogeneous values as a nested list. We can pass the ndarrays object to the DataFrame() constructor and set the column values to create a DataFrame with a heterogeneous data value...
array([0, 1, 1, 2, 2, 2, 4, 4, 4], dtype=int64) Exp Value x < 0 : 0 0 <= x <1 : 1 1 <= x <2 : 2 2 <= x <3 : 3 3 <=x : 4 Compares -0.9 to 0, here x < 0 so Put 0 in resulting array. Compares 0.5 to 0, here 0 <= x <1 so Put 1. ...
arr2=np.array([10,20,30])result=arr1+arr2# 广播相加 print(result)在上述例子中,arr2被广播以匹配arr1的形状,然后进行相加操作。这种灵活性使得处理不同形状的数组变得更加容易。1.2 高级索引 NumPy提供了多种高级索引技巧,如布尔索引、整数数组索引和切片索引,可以满足各种复杂的数据选择需求。 99 ...
>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported 基本运算 数组上的算术运算符以逐元素方式应用。将创建一个新数组并填充结果。 >>> a = np.array([20, 30, 40, 50]) >>> b = np.arange(4) >>> b array([0, 1, 2, 3]) >>> c = a - b >>> c...