importnumpyasnp# 创建一个有24个元素的一维数组arr=np.arange(1,25)print("Original array from numpyarray.com:",arr)# 重塑为2x3x4的三维数组reshaped_3d=arr.reshape(2,3,4)print("3D array from numpyarray.com:",reshaped_3d)# 使用-1参数重塑为2x3x?的三维数组reshaped_3d_auto=arr.reshape(2,...
z.reshape(-1) array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]) z.reshape(-1, 1) 也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有1列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有16行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。 z.reshape(...
y = x.reshape(1,-1) y Out[39]: array([[2, 0, 1, 1, 2, 3]]) 指定新数组行为2,则 y = x.reshape(2,-1) y Out[41]: array([[2, 0, 1], [1, 2, 3]])
reshape可以用于numpy库里的ndarray和array结构以及pandas库里面的DataFrame和Series结构。 源数据 reshape函数 reshape(行,列)可以根据指定的数值将数据转换为特定的行数和列数,这个好理解,就是转换成矩阵。 然而,在实际使用中,特别是在运用函数的时候,系统经常会提示是否需要对数据使用reshape(1,-1)或者reshape(-1,1...
结论:reshape(-1,1)是将一维数据在行上变化,而reshape(1,-1)是将一维数据在列上变化。 这里-1是指未设定行数,程序随机分配,所以这里-1表示任一正整数 所以reshape(-1,1)表示(任意行,1列) 如: e = np.array([1]) #只包含一个数据 f = e.reshape(1,-1) #改变形状,输出f之后发现它已经变成了二...
Numpy reshape 允许在一个维度上使用 -1, 意思是 “unknown” 。 numpy reshape 的一个假设是新旧 shape 所包含的数据相等, 所以当其他维度已知, 总数据量已知的情况下, numpy 就可以推断出剩余一个维度的信息。 如下例, reshape 允许一个维度为 -1 ...
这里的-1参数表示reshape自动计算第二个维度上的数组长度,None在方括号中充当np.newaxis的快捷方式,该快捷方式在指定位置添加了一个空axis。 因此,NumPy中总共有三种类型的向量:一维数组,二维行向量和二维列向量。这是两者之间显式转换的示意图: 根据规则,一维数组被隐式解释为二维行向量,因此通常不必在这两个数组之...
可以使用 .reshape(-1) 将 2D 数组重新整形为 1D 数组。例如: {代码...} 通常, array[-1] 表示最后一个元素。但是 -1 在这里意味着什么? 原文由 user2262504 发布,翻译遵循 CC BY-SA 4.0 许可协议
train_set_x_flatten=train_set_x_orig.reshape(-1,train_set_x_orig.shape[0]) 上面的train_set_x_orig就是原始导入进来的数据,shape是(209,64,64,3)。 正确的写法应该是: train_set_x_flatten=train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T ...
在numpy中,当使用reshape函数时,参数-1具有特殊含义。官方文档指出,这个参数表示一个维度的大小未知,将根据原数组的长度和其他维度自动推算。具体来说,假设你有一个形状为(3,4)的数组,总面积为12。当你传递(-1,1)给reshape,-1表明这一个维度的大小未知,会根据总的元素数量12来决定。在这种...