关于numpy.random.seed,下列说法错误的是() A. 设置的seed()值仅一次有效 B. seed()用于指定随机数生成时所用算法开始的整数值 C. 如果使用相同的seed()值,则每次生成的随机数都相同 D. seed()不能为空 相关知识点: 试题来源: 解析 D 反馈 收藏 ...
random.seed()函数的作用原理基于随机数生成器的内部算法。随机数生成器通常使用一种称为伪随机数生成器(PRNG)的算法,这种算法根据一个初始的种子值(seed)生成一系列的随机数。PRNG算法的设计使得相同的种子能够产生相同的随机数序列,而不同的种子则会产生不同的随机数序列。 通过设置种子,我们可以控制随机数生成器...
np.random.seed()函数接受一个整数作为参数,这个整数就是随机数生成器的种子。设置种子后,随后的随机数生成操作(如np.random.rand(),np.random.randint()等)将基于这个种子生成可预测的随机数序列。 示例:使用np.random.seed() 让我们通过一个简单的例子来演示np.random.seed()的用法。 import numpy as np #...
1.1.可以看出,像http://blog.csdn.net/linzch3/article/details/58220569这篇博客中提到的,np.random.seed()对后面的随机数一次有效,而不是一直有效,这种说法是错误的。 两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实...
五、np.random.seed():按照种子来生成随机数,种子一样,则生成的随机数结果必一致 该函数可以传入任意一个整数值,作为一颗种子。你就把这个整数值想象成一可桃树种子, 当然这棵种子得到的结果肯定是桃树,当你要再生成一棵桃树,你肯定还要设置相同的整数值作为桃树种子,这样长出来的才会是一样的桃树。 类比产生随机...
Numpy常用random随机函数 seed 向随机数生成器传递随机状态种子 只要random.seed( * ) seed里面的值一样,那随机出来的结果就一样。所以说,seed的作用是让随机结果可重现。也就是说当我们设置相同的seed,每次生成的 随机数相同。如果不设置seed,则每次会生成不同的随机数。使用同一个种子,每次生成的随机数序列都是...
Numpy.random.seed() 设置seed()里的数字就相当于设置了一个盛有随机数的“聚宝盆”,一个数字代表一个“聚宝盆”,当我们在seed()的括号里设置相同的seed,“聚宝盆”就是一样的,那当然每次拿出的随机数就会相同(不要觉得就是从里面随机取数字,只要设置的seed相同取出地随机数就一样)。如果不设置seed,则每次会...
seed()函数的用法如下: numpy.random.seed(seed=None) 参数: - seed:整数或者None,指定随机数生成器的种子,默认为None。 示例: ```python import numpy as np np.random.seed(0) x = np.random.rand(5) print(x) #输出[0.5488135 0.71518937 0.60276338 0.54488318 0.4236548] np.random.seed(0) y = np...
Code 1: 说明: Code1是使用了随机数种子seed(),种子数30,seed( ) 是用于指定随机数生成时所用算法开始的整数值,代码中每执行一次都使用了相同的随机数种子30,所以生成的随机数是相同的。 Code2: 说明:Code2…