NumPy Exercises, Practice, Solution: Improve your NumPy skills with a range of exercises from basic to advanced, each with solutions and explanations. Enhance your Python data analysis proficiency.
import numpy as np data1 = [1,3,5,7] #列表 w1 = np.array(data1) print('w1:',w1) data2 = (2,4,6,8) #元组 w2 = np.array(data2) print('w2:',w2) data3 = [[1,2,3,4],[5,6,7,8]] #多维数组 w3 = np.array(data3) print('w3:',w3) 专门创建数组的函数 利用arange...
Write a NumPy program to create two arrays with shape (300,400, 5), fill values using unsigned integer (0 to 255). Insert a new axis that will appear at the beginning in the expanded array shape. Now combine the said two arrays into one. Sample Solution: Python Code: # Importing NumP...
importtime# 创建一个大型的包含 Python 对象的数组large_data=np.array([i+0.5foriinrange(1000000)],dtype=object)# 测试 Python 代码的性能start_time=time.time()result=sum(large_data)print(f"Python 代码总和:{result}, 耗时:{time.time()-start_time:.2f}秒")# 测试 Cython 代码的性能start_time=...
random.randn(hide_2, output) # (4, 1) #学习率 learning_rate = 1e-5 #训练 def train(train_data, train_label, input, hide_1, hide_2, output, w1, w2, w3): for epoch in range(50000): #前向传播 #h0层 h0 = train_data.dot(w1) # (100, 2) * (2, 5) -> (100, 5) ...
NumPy 学习笔记 NumPy 是一个 Python 库。 NumPy 用于处理数组。 NumPy 是“Numerical Python”的缩写。 创建一个 NumPy 数组: import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr
其对应的python代码如下—— def backward(self, top_diff): # 反向传播的计算 # TODO:全连接层的反向传播,计算参数梯度和本层损失 self.d_weight = np.dot(self.input.T, top_diff) self.d_bias = np.sum(top_diff, axis=0) bottom_diff = np.dot(top_diff, self.weight.T) return bottom_diff...
强烈推荐斋藤康毅的《深度学习入门——基于Python的理论与实现》,写的非常浅显易懂,而且只用了numpy来实现神经网络,很适合用来入门,本文的思路和一些代码就是依照这本书实现的。 1. 搭建网络 1.1. 仿射变换 神经元的模型不再赘述,网上有很多相关的视频。假设有如下一个网络: ...
在本例中,第一个维度就是行,第二个维度就是列,因此 b 就变成了 2x6 的矩阵。...python将nan, inf转为特定的数字处理两个矩阵的点除,得到结果后,再作其他的计算,发现有些内置的函数不work;查看得到的数据,发现有很多nan和inf,导致python的基本函数运行不了,...为
In [18]: def identity_function(x): ...: return x In [19]: In [20]: W3 = np.array([[0.1, 0.3], [0.2, 0.4]]) In [21]: B3 = np.array([0.1, 0.2]) In [22]: Z3 = np.dot(Z2, W3) + B3 In [23]: Z3 Out[23]: array([0.31682708, 0.69627909]) ...