importnumpyasnp# 创建一个2D数组arr_2d=np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])# 先展平,然后重塑为3Darr_3d=arr_2d.flatten().reshape(2,3,2)print("Original 2D array from numpyarray.com:")print(arr_2d)print("\nFlattened and reshaped 3D array:")print(arr_3d) Python...
>>> x.flatten()array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) 当你使用flatten时,对新数组的更改不会影响父数组。 例如: >>> a1 = x.flatten()>>> a1[0] = 99>>> print(x) # Original array[[ 1 2 3 4][ 5 6 7 8][ 9 10 11 12]]>>> print(a1) # New arra...
reshape(a, newshape[, order])Gives a new shape to an array without changing its data.ravel(a[, order])Return a contiguous flattened array.ndarray.flatA 1-D iterator over the array.属性,会改变原数组。ndarray.flatten([order])Return a copy of the array collapsed into one dimension.方法,不...
复制 >>> x = np.array([[1, 2], [3, 4]]) >>> y = np.array([[5, 6]]) 你可以用以下方法将它们连接起来: 代码语言:javascript 代码运行次数:0 运行 复制 >>> np.concatenate((x, y), axis=0) array([[1, 2], [3, 4], [5, 6]]) 要从数组中删除元素,可以简单地使用索引选...
array([6, 4, 8, 9, 6, 5, 0, 4, 8, 5, 1, 3, 1, 0, 3, 2, 3, 3, 6, 5]) 它们看起来一样吗?不完全是。flatten 总是返回一个 1D 副本,而 ravel 则试图生成原始数组的 1D 视图。也就是说如果修改从 ravel 返回的数组可能会改变原来的数组。
flatten()是NumPy中最直接的将多维数组转换为1D数组的方法。虽然它不直接将3D转为2D,但它是理解降维过程的重要起点。 2.1 基本用法 importnumpyasnp array_3d=np.array([[[1,2],[3,4]],[[5,6],[7,8]]])flattened=array_3d.flatten()print("Original 3D array from numpyarray.com:")print(array_3d...
array.flatten() array([6, 4, 8, 9, 6, 5, 0, 4, 8, 5, 1, 3, 1, 0, 3, 2, 3, 3, 6, 5]) 它们看起来一样吗?不完全是。flatten总是返回一个1D副本,而ravel则试图生成原始数组的1D视图。也就是说如果修改从ravel返回的数组可能会改变原...
本节涵盖1D 数组,2D 数组,ndarray,向量,矩阵 你可能偶尔会听到将数组称为ndarray,这是“N 维数组”的缩写。一个 N 维数组就是一个具有任意数量维度的数组。您还可能听到1-D,或一维数组,2-D,或二维数组,等等。NumPy 的ndarray类用于表示矩阵和向量。向量是一个具有单一维度的数组(行向量和列向量之间没有区别...
array.flatten array([6, 4, 8, 9, 6, 5, 0, 4, 8, 5, 1, 3, 1, 0, 3, 2, 3, 3, 6, 5]) 它们看起来一样吗?不完全是。flatten总是返回一个1D副本,而ravel则试图生成原始数组的1D视图。也就是说如果修改从ravel返回的数组可能会改变原来的数组。
atleast_1d(*arys) 将输入转换为至少具有一个维度的数组。 atleast_2d(*arys) 将输入视为具有至少两个维度的数组。 atleast_3d(*arys) 将输入视为具有至少三维的数组。 broadcast 制作一个模仿广播的对象。 broadcast_to(array, shape[, subok]) 将数组广播到新形状。