Example 1: minimum() With 2-D Array importnumpyasnp# create two 2-D arraysarray1 = np.array([[1,2,3], [4,5,6]]) array2 = np.array([[2,4,1], [5,3,2]]) # find the element-wise minimum of array1 and array2result = np.minimum(array1, array2) print(result) Run Code...
*,np.multiply() 对应元素积 (element-wise product) np.divide() 逐元素除(element-wise division) np.matmul()(或符号@) 矩阵乘积 np.linalg.norm(x)L2-Norm L2-norm and the Euclidean distance can be calculated bynp.linalg.norm(x1-x2). np.linalg.lstsq() 以最小二乘法求解方程。 np.squeeze(...
hypot(x1, x2[, out]) 求直角三角形斜边 arctan2(x1, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly. degrees(x[, out]) 弧度求角度 radians(x[, out]) 角度求弧度 unwrap(p[, discont, axis]) Unwrap by changing deltas between values to 2*pi complement....
不像许多矩阵语言,NumPy中的乘法运算符dot函数或创建矩阵对象实现(参见教程中的矩阵章节) >>> A = array( [[1,1],... [0,1]] )>>> B = array( [[2,0],... [3,4]] )>>> A*B# elementwise product array([[2,0], [0,4]])>>> dot(A,B)# matrix product array([[5,4], [3,...
>>> A = np.array([[1, 1], ... [0, 1]]) >>> B = np.array([[2, 0], ... [3, 4]]) >>> A * B # elementwise product array([[2, 0], [0, 4]]) >>> A @ B # matrix product array([[5, 4], [3, 4]]) >>> A.dot(B) # another matrix product array([[...
>>> A * B # elementwise product array([[2, 0], [0, 4]]) >>> A @ B # matrix product array([[5, 4], [3, 4]]) >>> A.dot(B) # another matrix product array([[5, 4], [3, 4]]) 一些运算如,*= 和 += 并不会新创建数组,而是在原有数组上进行修改。
>>> A = np.array([[1, 1],... [0, 1]])>>> B = np.array([[2, 0],... [3, 4]])>>> A * B # elementwise productarray([[2, 0],[0, 4]])>>> A @ B # matrix productarray([[5, 4],[3, 4]])>>> A.dot(B) # another matrix productarray([[5, 4],[3, 4...
[3, 4]]) >>> A * B # elementwise product array([[2, 0], [0, 4]]) >>> A @ B # matrix product array([[5, 4], [3, 4]]) >>> A.dot(B) # another matrix product array([[5, 4], [3, 4]]) 一些操作,例如+=和*=,会就地修改现有数组,而不是创建新数组。 >>> rg...
maximum, fmax Element-wise maximum. fmax ignores NaN minimum, fmin Element-wise minimum. fmin ignores NaN mod Element-wise modulus (remainder of division) copysign Copy sign of values in second argument to values in first argument greater, greater_equal, less, less_equal, equal, not_equal Perf...
7. Element-wise Addition of Masked Arrays Write a NumPy program to perform element-wise addition of two masked arrays, maintaining the masks. Sample Solution: Python Code: importnumpyasnp# Import NumPy library# Create two regular NumPy arrays with some valuesdata1=np.array([1,2,np.nan,4,5...