numpy.pad(array, pad_width, mode='constant', **kwargs): 在数组array的边缘填充指定数量的元素,填充方式由mode参数指定。 numpy.cov(array): 计算数组array的协方差矩阵。 numpy.random.choice(array, size=None, replace=True, p=None): 从数组array中随机选择元素组成新的数组,可以指定选择的数量、是否可...
X = sm.add_constant(np.array([[r["x1"], r["x2"]] for r in x])) res = sm.OLS(y, X).fit() return res.params with suppress(Exception): duckdb.remove_function("ols4") duckdb.create_function("ols4", ols4) 这样我们就可以在 SQL 中直接调用,执行测试: sql = """ with tmp as...
((before_1,after_1), (before_2,after_2), (before_3,after_3)) ‘constant’——表示连续填充相同的值,每个轴可以分别指定填充值, constant_values=(x, y)时前面用x填充,后面用y填充,缺省值填充0edge 转换成 齐次矩阵(Homogeneous Transformations) ((0,0), (0,0), (0,1)) ‘constant’ constant...
importnumpyasnp# 创建一个原始数组original_array=np.array([[1,2],[3,4]])new_column=np.array([5,6])# 使用 pad 添加列result_array=np.pad(original_array,((0,0),(0,1)),mode='constant',constant_values=0)result_array[:,-1]=new_columnprint(result_array) Python Copy Output: 9. 使...
# np.zeros zeros_arr = np.zeros((3, 4)) # np.ones ones_arr = np.ones((2, 3)) c = np.full((2,2), 7) # Create a constant array print(c) # Prints "[[ 7. 7.] # [ 7. 7.]]" d = np.eye(2) # Create a 2x2 identity matrix print(d) # Prints "[[ 1. 0.] ...
print(np.add(tensor, 1)) print("The .numpy() method explicitly converts a Tensor to a numpy array") print(tensor.numpy()) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. tensor也有dtype以及shape。最大的区别是tensor是能通过GPU进行加速运算的。
import numpy as np a = np.array([1,2,3,4,5]) b = np.array([1,2,3,4]) a,b # 填充b数组使其长度与a相同 b = np.pad(b, pad_width=(0, 1), mode='constant', constant_values=-1) b # 垂直方向完成组合操作,生成新数组 c = np.vstack((a, b)) c 1. 2. 3. 4. 5. ...
dataloader: pred = model(x) loss = loss_fn(pred, y) losses.append(loss) grad = loss_fn.backward() model.backward(grad) opt.step() opt.clear_grad() print("epoch: {}. loss: {}".format(epoch, np.array(losses).mean()))5. 验证效果训练结束后,我们生成一组...
pad(array, pad_width, mode, **kwargs) 返回值:数组 2)参数解释 array——表示需要填充的数组; pad_width——表示每个轴(axis)边缘需要填充的数值数目。 参数输入方式为:((before_1, after_1), … (before_N, after_N)),其中(before_1, after_1)表示第1轴两边缘分别填充before_1个和after_1个数值...
Arrays can be created with python sequences or initialized with constant values of 0 or 1, or uninitialized. Some of the array element types are byte, int, float, complex, uint8, uint16, uint64, int8, int16, int32, int64, float32, float64, float96, complex64, complex128, and compl...