在reshape函数中,可以使用-1来让Numpy自动计算该维度的大小。 importnumpyasnp# 创建一个一维数组arr_1d=np.array([1,2,3,4,5,6,7,8])# 将一维数组转换为4行2列的二维数组,其中列数自动计算arr_2d=arr_1d.reshape((4,-1))print(arr_2d) Python Copy Output: 示例3: 转换具有更多元素的数组 import...
array([[ 0.4, -0.1], [-0.2, 0.3]]) 5.数学计算 操作 举例: #If a 1d array is added to a 2d array (or the other way), NumPy #chooses the array with smaller dimension and adds it to the one #with bigger dimension a = np.array([1, 2,...
array_3d=np.array([[[1,2],[3,4]],[[5,6],[7,8]]])array_2d=array_3d.flatten().reshape(-1,2)print("Original 3D array from numpyarray.com:")print(array_3d)print("\n2D array after flatten and reshape:")print(array_2d) Python Copy Output: 这个方法首先将3D数组展平为1D,然后重...
使用布尔值进行索引的第二种方式更类似于整数索引;对数组的每个维度,我们提供一个选择我们想要的切片的 1D 布尔数组: >>> a = np.arange(12).reshape(3, 4) >>> b1 = np.array([False, True, True]) # first dim selection >>> b2 = np.array([True, False, True, False]) # second dim sele...
array([0, 1, 2, 3, 4, 5])>>> np.reshape(a,(2, 3)) array([[0, 1, 2], [3, 4, 5]]) >>> np.reshape(a,(3,-1)) array([[0, 1], [2, 3], [4, 5]]) >>> a.reshape(6,1) array([[0], [1], [2], ...
这意味着1D数组将变为2D数组, 2D数组将变为3D数组,依此类推。 例如,如果您从这个数组开始: >>> a = np.array([1, 2, 3, 4, 5, 6])>>> a.shape(6,) 您可以使用np.newaxis添加新轴: >>> a2 = a[np.newaxis, :]>>> a2.shape(1, 6) 您可以使用 显式转换具有行向量或列向量的一维数组...
使用array函数从常规Python列表或元组中创建数组。 >>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64') ...
本节涵盖np.array()、np.zeros()、np.ones()、np.empty()、np.arange()、np.linspace()、dtype 要创建一个 NumPy 数组,可以使用函数np.array()。 要创建一个简单的数组,您只需向其传递一个列表。如果愿意,还可以指定列表中的数据类型。您可以在这里找到有关数据类型的更多信息。
If I wanted to generate a 1d array of numbers,I will simply insert the size of that array, ...
Equivalent to b[-1,:] array([40, 41, 42, 43]) b[i]中括号中的表达式被当作i和一系列:,来代表剩下的轴。NumPy也允许你使用“点”像 b[i,...]。 点(…)代表许多产生一个完整的索引元组必要的分号。如果x是秩为5的数组(即它有5个轴),那么: x[1,2,…] 等同于 x[1,2,:,:,:],x[…,...