NSGA-II,也称为非支配排序遗传算法II,是一种用于解决多目标优化问题的遗传算法。我们可以从以下几点去深入了解:1、算法的背景与特点;2、核心步骤与算法流程;3、主要应用领域;4、与其他遗传算法的对比;5、算法的优势与局限性;6、未来的发展趋势。 1、算法的背景与特点 多目标优化:在许多实际问题中,我们需要同时考...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),其中NSGA II就是多目标进化算法的一种,相较于经典遗传算法,主要做出三点改进: 1 非支配排序 2 个体拥挤度算子计算 3 精英策略算子选择改进 下面将详细介绍NSGA II算法原理及实现流...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...
一、非支配排序遗传算法(NSGA) 1995年,Srinivas和Deb提出了非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms,NSGA)。这是一种基于Pareto最优概念的遗传算法。 1、基本原理 NSGA与简单的遗传算法的主要区别在于:该算法在选择算子执行之前根据个体之间的支配关系进行了分层。其选择算子、交叉算子和变异算子与简...
NSGA-II是基于NSGA-I进行改进的,深入学习可以阅读著名论文《A fast and elitist multiobjective genetic algorithm: NSGA-II》,谷歌学术显示引用量已经达到26350次,其主要改进了三个内容:(1)提出了快速非支配排序算法;(2)采用拥挤度和拥挤度比较算子;(3)引入精英策略。
【数之道37】多目标优化求解策略与遗传算法NSGA-II<最优化系列第3集>, 视频播放量 45397、弹幕量 22、点赞数 1535、投硬币枚数 718、收藏人数 2721、转发人数 324, 视频作者 FunInCode, 作者简介 公众号: FunInCode 邮箱: funincodedata@gmail.com,相关视频:遗传算法多目
NSGA(非支配排序遗传算法)、NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化。 在官网: http://www.iitk.ac.in/kangal/codes.shtml 可以下载到 NSGA-II 的C语言版源码,下载最新版后打开如下: ...
一、基本概念这是一种基于Pareto最优概念的多目标遗传算法。在选择操作执行之前,种群根据个体之间的支配与非支配关系进行排序,对其进行分层。对于同一层的个体,我们计算其拥挤距离,优先选择拥挤距离大的个体,…
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块。 这里,首先提一下,遗传算法的 交叉操作、变异操作都是需要设定概率的, 即交叉概率和变异概率。 假设种群个体 大小为 popsize , 那么交叉操作需要进行 popsize/2 次 , 变异...