NSGAII(带精英策略的⾮⽀配排序的遗传算法)NSGA⼀II的基本算法流程:(1)⾸先,随机产⽣规模为N的初始种群,⾮⽀配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第⼀代⼦代种群;(2)其次,从第⼆代开始,将⽗代种群与⼦代种群合并,进⾏快速⾮⽀配排序,同时对每个⾮⽀配层...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),其中NSGA II就是多目标进化算法的一种,相较于经典遗传算法,主要做出三点改进: 1 非支配排序 2 个体拥挤度算子计算 3 精英策略算子选择改进 下面将详细介绍NSGA II算法原理及实现流...
因为NSGA-II算法是一种遗传算法,所以首先搞清楚遗传算法的流程。 遗传算法流程 一般遗传算法的流程: 种群初始化 计算每个个体的适应度 选择 交叉 变异 根据是否满足解的精度要求和迭代次数来判断是否进行下一轮的遗传进化。 NSGA算法存在的3个问题 O(MN^3)计算时间复杂度(其中M代表目标个数,N代表种群个数) 非精...
如果不太清楚快速排序可以参考这个blog:十大排序算法及优化 ( C++简洁实现) 简单做个总结 (1) 第一轮比较:随机选择一个个体X作为基准数,使用快排根据支配关系(相关性,X≺dY)进行比较后,即可将种群分成支配(D集合)和非支配(non-dominant,ND集合)的两个子种群。
NSGA-II算法 Nondominated Sorting Genetic Algorithm II NSGA-II Fast Nondominated Sorting Approach 为了去确定N个种群中的第一个非支配前沿,每一个解都与其他的解进行比较,判断是否为支配关系。在这个阶段,所有的第一个非支配解被发现。为了去寻找下一个非支配前沿,对第一组非支配解进行折扣,重复上述的步骤。
在NSGA算法中采用的是非支配排序方法,该方法的计算复杂度是O( mN^3),而在NSGA-II算法中采用快速非支配排序的方法,其计算复杂度仅O(mN2)。下面,简要说明二者计算复杂度的由来: (1) 非支配排序算法的计算复杂度: 为了对优化对象的个数为m,种群规模大小为N的种群进行非支配排序,每一个个体都必须和种群中其它的...
NSGA-II,也称为非支配排序遗传算法II,是一种用于解决多目标优化问题的遗传算法。我们可以从以下几点去深入了解:1、算法的背景与特点;2、核心步骤与算法流程;3、主要应用领域;4、与其他遗传算法的对比;5、算法的优势与局限性;6、未来的发展趋势。 1、算法的背景与特
NSGA的一般流程 NSGA使用了非支配分层方法和适应度共享策略。非支配分层方法可以使好的个体有更大的机会遗传到下一代;适应度共享策略则使得准Pareto面上的个体均匀分布,保持了群体多样性,克服了超级个体的过度繁殖,防止了早熟收敛。 NSGA与简单的遗传算法的主要区别在于:该算法在选择算子执行之前根据个体之间的支配关系...
2、最优解:1中提到的‘满足目标函数的变量值’又可以称之为最优解,对于NSGA-III(或其他优化算法...