NSGA-II(Nondominated Sorting Genetic Algorithm II)是解决多目标优化问题的一种有效算法,由Deb等人于2002年提出。该算法以其快速的非支配排序方法、拥挤度计算策略和精英保留机制,在处理多目标优化问题时表现出色,受到广泛关注和应用。本文将详细介绍NSGA-II算法的基本原理、关键步骤及其数学模型,并通过一个具体案例进行...
NSGAII(带精英策略的⾮⽀配排序的遗传算法)NSGA⼀II的基本算法流程:(1)⾸先,随机产⽣规模为N的初始种群,⾮⽀配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第⼀代⼦代种群;(2)其次,从第⼆代开始,将⽗代种群与⼦代种群合并,进⾏快速⾮⽀配排序,同时对每个⾮⽀配层...
拥挤距离(Crowding Distance)是NSGA-II算法中的一个关键概念,用于衡量个体在非支配前沿中的稀疏程度。通过计算拥挤距离,可以在选择过程中优先保留那些位于稀疏区域的个体,从而维持种群的多样性。 算法的步骤是先初始化种群,将其拥挤距离置为0;然后按目标排序,对于每一个目标函数,按照该目标函数值对前沿中的个体进行排序...
下面将详细介绍NSGA II算法原理及实现流程。 二 算法实现 2.1 基础概念 ①多目标优化问题描述 定义带约束的多目标问题MOO(mulit object optimization)为: 其中,为 目标函数数量, 为约束数量。 ②Pareto支配(Pareto Dominance) 定义 ,若对所有的, ,都有
NSGA-II,也称为非支配排序遗传算法II,是一种用于解决多目标优化问题的遗传算法。我们可以从以下几点去深入了解:1、算法的背景与特点;2、核心步骤与算法流程;3、主要应用领域;4、与其他遗传算法的对比;5、算法的优势与局限性;6、未来的发展趋势。 1、算法的背景与特
在NSGA算法中采用的是非支配排序方法,该方法的计算复杂度是O( mN^3),而在NSGA-II算法中采用快速非支配排序的方法,其计算复杂度仅O(mN2)。下面,简要说明二者计算复杂度的由来: (1) 非支配排序算法的计算复杂度: 为了对优化对象的个数为m,种群规模大小为N的种群进行非支配排序,每一个个体都必须和种群中其它的...
以下是NSGA-II算法的基本流程的详细解释: 1. 初始化种群:NSGA-II算法的第一步是创建一个初始种群,这个种群中的每个个体代表一个可能的解决方案。这些个体是随机生成的,且每个个体都有一个与之相关的基因编码,代表了特定的解决方案。 2. 适应度评估:在NSGA-II中,适应度评估是通过计算每个个体的非支配级别和拥挤...
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块。 这里,首先提一下,遗传算法的 交叉操作、变异操作都是需要设定概率的, 即交叉概率和变异概率。 假设种群个体 大小为 popsize , 那么交叉操作需要进行 popsize/2 次 , 变异...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),比如非支配排序基因算法(nondominated sorting genetic algorithm (NSGA))。但是NSGA有以下问题 非支配排序时间复杂度太高,为,其中M为多目标数,N为种群数 ...