不同算法适用场景不同,例如GA天然适应离散变量的优化(交叉,变异等);PSO适合连续值。 可以结合应用场景着手改进,例如,针对自己的场景,提出新的初始化、计算拥挤距离的方式。 5.1 代码分析 yarpiz.com(代码很清晰,还有机器学习、多目标优化的代码) python版本直接搜索NSGA-II python 在写两层循环的时候,第一层for i...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),其中NSGA II就是多目标进化算法的一种,相较于经典遗传算法,主要做出三点改进: 1 非支配排序 2 个体拥挤度算子计算 3 精英策略算子选择改进 下面将详细介绍NSGA II算法原理及实现流...
4.快速非支配排序在NSGA算法中采用的是非支配排序方法,该方法的计算复杂度是O( mN^3),而在NSGA-II算法中采用快速非支配排序的方法,其计算复杂度仅O(mN2)。下面,简要说明二者计算复杂度的由来: (1) 非支配排序算法的计算复杂度: 为了对优化对象的个数为m,种群规模大小为N的种群进行非支配排序,每一个个体都...
NSGA-II为改良过可以用于多目标优化场景的遗传算法,是NSGA算法的2.0版本,据说一定程度解决了(1)计算复杂度高(从 O(MN3) 降到了 O(MN2) ,M为目标数,N为种群数);(2)缺少最优筛选(也就是精英主义);(3)需要定义共享参数;这三个问题。 这些虚虚夸夸的我也不懂 ,直接进入主题,首先什么叫支配呢?也就是: ...
NSGA-II算法主要包括以下几个步骤: 初始化种群 评估种群个体的适应度 非支配排序 拥挤度计算 选择操作 交叉和变异操作 精英保留 终止条件检查 初始化种群 首先,随机生成一个初始种群P0,种群大小为N。每个个体对应一个潜在解x。 对于种群中的每个个体,计算其所有目标函数值,即计算每个x对应的F(x)。评估种群个体的...
NSGA-II改进算法:外部存档更新与截断策略,本视频由百度文库提供,0次播放,好看视频是由百度团队打造的集内涵和颜值于一身的专业短视频聚合平台
在NSGA算法中采用的是非支配排序方法,该方法的计算复杂度是O( mN^3),而在NSGA-II算法中采用快速非支配排序的方法,其计算复杂度仅O(mN2)。下面,简要说明二者计算复杂度的由来: (1) 非支配排序算法的计算复杂度: 为了对优化对象的个数为m,种群规模大小为N的种群进行非支配排序,每一个个体都必须和种群中其它的...
NSGAII(带精英策略的⾮⽀配排序的遗传算法)NSGA⼀II的基本算法流程:(1)⾸先,随机产⽣规模为N的初始种群,⾮⽀配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第⼀代⼦代种群;(2)其次,从第⼆代开始,将⽗代种群与⼦代种群合并,进⾏快速⾮⽀配排序,同时对每个⾮⽀配层...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...