2.2.2 拥挤度计算: 算法3拥挤度计算算法 : 对节点通过对于的目标函数值 进行排序,并得到 和 将两个边界和对应的节点拥挤度设置为 对于其他节点, 对于双目标优化,相当于该目标相邻的两个节点围成的矩形边长之和 图3 拥挤度计算 参考文献 [1] Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimizatio...
NSGA-II为改良过可以用于多目标优化场景的遗传算法,是NSGA算法的2.0版本,据说一定程度解决了(1)计算复杂度高(从 O\left( MN^{3}\right) 降到了 O\left( MN^{2}\right) ,M为目标数,N为种群数);(2)缺少最优筛选(…
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...
因为NSGA-II算法是一种遗传算法,所以首先搞清楚遗传算法的流程。 遗传算法流程 一般遗传算法的流程: 种群初始化 计算每个个体的适应度 选择 交叉 变异 根据是否满足解的精度要求和迭代次数来判断是否进行下一轮的遗传进化。 NSGA算法存在的3个问题 O(MN^3)计算时间复杂度(其中M代表目标个数,N代表种群个数) ...
下面是NSGA-II算法的流程图: NSGA-II算法流程 NSGA-II算法Java实现 下面是NSGA-II算法的Java实现代码示例: // 定义个体类classIndividual{double[]objectives;doublecrowdingDistance;}// 初始化种群List<Individual>population=newArrayList<>();for(inti=0;i<populationSize;i++){Individualindividual=newIndividual()...
NSGA-II是基于NSGA-I进行改进的,深入学习可以阅读著名论文《A fast and elitist multiobjective genetic algorithm: NSGA-II》,谷歌学术显示引用量已经达到26350次,其主要改进了三个内容:(1)提出了快速非支配排序算法;(2)采用拥挤度和拥挤度比较算子;(3)引入精英策略。
NSGAII(带精英策略的⾮⽀配排序的遗传算法)NSGA⼀II的基本算法流程:(1)⾸先,随机产⽣规模为N的初始种群,⾮⽀配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第⼀代⼦代种群;(2)其次,从第⼆代开始,将⽗代种群与⼦代种群合并,进⾏快速⾮⽀配排序,同时对每个⾮⽀配层...
NSGA-II 1.1 背景和概念 多个目标函数同时优化 在两个或多个相互冲突的目标之间进行权衡的情况下作出最优决策 (若优化方向一致,可以加权转化为单目标) 优化的结果是一组解(曲线或者曲面): 决策边界——帕累托前沿,即帕累托最优 2.1 基本原理 智能优化基本流程 ...
整体NSGA工作流程如下图所示: NSGAII(带精英策略的非支配排序的遗传算法)✕✕NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体...