示意图如图1所示。 1.2 快速非支配排序 假设种群大小为P,该算法需要计算每个个体p的被支配个数 n p n_p np和该个体支配的解的集合 S p S_p Sp这两个参数。遍历整个种群,该参数的计算复杂度为 O ( m N 2 ) O(mN^2) O(mN2)。该算法的伪代码如下: 1.计算出种群中每个个体的两个参数 n ...
中的个体重复Step 3,直到全部个体划分完成 图2 快速非支配排序结果 2.2.2 拥挤度计算: 算法3拥挤度计算算法 : 对节点通过对于的目标函数值 进行排序,并得到 和 将两个边界和对应的节点拥挤度设置为 对于其他节点, 对于双目标优化,相当于该目标相邻的两个节点围成的矩形边长之和 图3 拥挤度计算 参考文献 [1]...
图4-2 NSGA-II的父代与子代产生 其中,NSGA-II关键子程序算法 1)快速非支配排序算法 多目标优化问题的关键在于求取Pareto最优解集。NSGA-II快速非支配排序是依据个体的非劣解水平对种群M进行分层得到Fi,作用是使得解靠近pareto最优解。这是一个循环的适应值分级过程,首先找出群体中的非支配解集,记为F1,将其所有...
一、NSGA-II简介 NSGA-Ⅱ算法是Kalyanmoy Deb等人于 2002年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快速排序后的同级比较中作为胜出标准,使准 Pareto 域中的个体能扩展到整...
非支配排序遗传算法(NSGA,NSGA-II ) 一、非支配排序遗传算法(NSGA) 1995年,Srinivas和Deb提出了非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms,NSGA)。这是一种基于Pareto最优概念的遗传算法。 1、基本原理 NSGA与简单的遗传算法的主要区别在于:该算法在选择算子执行之前根据个体之间的支配关系进行了分层...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...
NSGA一II算法的基本思想为:首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;...
NSGA-II算法 NSGA-II算法主要由以下三个部分组成 A、快速非支配排序方法 B、拥挤比较算子 C、主程序 A、快速非支配排序方法 传统排序方法:时间复杂度O(MN3),M是目标个数,N是种群个数。为了计算第一非支配前沿面,需要判断每个解和种群中的其他解的支配关系。一个解和其他解的支配关系需要O(MN)复杂度,每个解...
首先,在传统的遗传算法中,在某一次迭代中,只有该次迭代的父代参与选择交叉变异,从而产生子代,作为下一次迭代的父代。 而在NSGA-II中,为了保证最优解的不丢失,提高算法的收敛速度,作者提出了“精英选择策略”,即将父代 P t P_t Pt 和子代 Q t Q_t Qt 种群,合并为一个种群 R t ...
在NSGA2中使用了排挤算法和精英策略来代替共享函数算法。而要实现这两种方法,首先我们需要定义两个操作:密度估算和排挤算子。 密度估算方法: 要对拥挤距离进行计算,则需要根据每个目标函数对种群中的所有个体按升序进行排序。第一个和最后一个个体的拥挤距离设为无穷大,第i 个个体的拥挤距离则设为第i+1和第i个体的...