这个算法是本人接触科研学习实现的第一个算法,因此想在这里和大家分享一下心得。 1. 算法简介 NSGA-Ⅱ算法,即带有精英保留策略的快速非支配多目标优化算法,是一种基于Pareto最优解的多目标优化算法。 1.1 Pareto支配关系以及Pareto等级 Pareto支配关系:对于最小化多目标优化问题,对于n个目标分量 f i ( x ) , i...
针对多目标优化问题,可以用一些多目标进化算法(multiobjective evolutionary algorithms (MOEAs))找到多个帕累托最优解(Pareto-optimal),其中NSGA II就是多目标进化算法的一种,相较于经典遗传算法,主要做出三点改进: 1 非支配排序 2 个体拥挤度算子计算 3 精英策略算子选择改进 下面将详细介绍NSGA II算法原理及实现流...
NSGA-II是基于非支配排序方法的精英主义MOEA。在实践中,NSGA-II仍然是一种经典的方法,它可以找到一个更好的解的扩展,并在真正的帕累托最优前沿附近更好地收敛。这也是设计一个简单而高效的算法的一个很好的例子。在实现方面,DEAP提供了一个很好的python工具包来执行NSGA-II。 Reference: [1] A Fast and Eliti...
NSGA-Ⅱ(非支配排序遗传算法II)是一种常用的多目标优化算法,能够有效地解决多目标、多约束的优化问题。本文将NSGA-Ⅱ算法进行改进,以适应园区多能互补系统的设计和实现。三、系统设计1.系统架构设计园区多能互补系统由能源供应子系统、能源储存子系统、能源转换子系统和能源分配子系统等组成。其中,能源供应子系统包括...
在航空航天工程中,翼型设计是一个至关重要的领域。翼型的设计直接影响着飞行器的性能和稳定性。因此,优化翼型设计是实现高效飞行和降低能耗的关键。 近年来,随着计算机技术的进步和优化算法的发展,基于多目标优化的翼型设计方法得到了广泛应用。其中,非支配排序遗传算法II(NSGAII)是一种常用的优化算法,被广泛应用于翼型...
拥挤距离(Crowding Distance)是NSGA-II算法中的一个关键概念,用于衡量个体在非支配前沿中的稀疏程度。通过计算拥挤距离,可以在选择过程中优先保留那些位于稀疏区域的个体,从而维持种群的多样性。 算法的步骤是先初始化种群,将其拥挤距离置为0;然后按目标排序,对于每一个目标函数,按照该目标函数值对前沿中的个体进行排序...
通过以上步骤,NSGA-II算法能够在搜索空间中有效地探索和开发,同时保持种群的多样性和稳定性。2. 执行交叉操作:基于选择操作选出的父母,运用交叉函数(crossover)生成两个新的后代(child1和child2)。这一步是NSGA-II算法中关键的一环,它模拟了生物进化中的基因重组过程,从而实现了种群的多样性。通过以上步骤...
在NSGA-II中,非支配排序是选择的重要过程。我们需要分组所有个体并计算其拥挤度。 defnon_dominated_sort(population):# 你的非支配排序算法,将会返回排序后的个体列表# 这里省略具体实现步骤pass 1. 2. 3. 4. 6. 交叉 交叉操作用于生成新个体。 defcrossover(parent1,parent2):child1=Individual((parent1.x...
在实现NSGA-II(非支配排序遗传算法)之前,理解算法及其步骤非常重要。下面的表格展示了实现这个算法的基本流程: 每一步的代码实现 下面将详细说明每一步需要做什么,以及相应的代码示例。 1. 初始化种群 importnumpyasnpdefinit_population(pop_size,n_variables):returnnp.random.rand(pop_size,n_variables)# 随机初...