非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。 2. 为什么要用非极大值抑制 以...
NMS(Non-Maximum Suppression,非极大值抑制)是目标检测中常用的一种后处理技术,用于消除冗余的检测框,保留最有可能的检测结果。其主要目的是解决多个边界框重叠的问题,确保每个目标只有一个边界框。 NMS 的原理 输入:NMS 的输入是一组候选边界框及其对应的置信度分数(confidence scores)。每个边界框通常包含四个坐标值...
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数...
非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制非极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数...
Non-Maximum Suppression,NMS非极大值抑制 概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和...
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。在目标检测中是提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用...
简介:本文将用通俗易懂的语言解释非极大抑制(Non-Maximum Suppression,NMS)的概念,并详细阐述其在计算机视觉领域,尤其是目标检测中的重要作用。通过实例和生动的语言,帮助读者理解这一复杂的技术概念,并提供实际操作建议。 满血版DeepSeek,从部署到应用,全栈都支持 快速部署、超低价格、极速蒸馏、应用开发、即时调用 ...
题目源于百度深度学习平台算法工程师面试 NMS 概念 非极大值抑制(Non-Maximum Suppression, NMS),顾名思义就是抑制那些不是极大值的元素,可以理解为局部最大值搜索。对于目标检测来说,非极大值抑制的含义就是对于重叠度较高的一部分同类候选框来说,去掉那些置信度较低的框,只保留置信度最大的那一个进行后面的流...
非极大值抑制[1](Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。 这个局部代表的是一个邻域,邻域的“维度”和“大小”都是可变的参数。 NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、3D重建、目标识别以及纹理分析等。