Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet ...
Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet ...
In this section, we study the behavior of the topological phases in 1D SSQW and 2D DTQW by introducing a nonzero scaling factor\gammawhich, essentially, makes the system non-Hermitian. In 1D SSQW, we find that the topological phases are unaffected even when the system is non-Hermitian (i...
Non-Hermitian topological phases can produce some remarkable properties, compared with their Hermitian counterpart, such as the breakdown of conventional bulk-boundary correspondence and the non-Hermitian topological edge mode. Here, we introduce several algorithms with multilayer perceptron (MLP), and ...
The introduction of topology in condensed-matter physicslead to the discovery of topological phase transitions and materials as topological insulators. Phase transitions in the symmetry of non-Hermitian systems describe the transition to on-average conserved energyand new topological phases. Bulk ...
Non-Hermiticity is expected to add far more physical features to the already rich Floquet topological phases of matter. Nevertheless, a systematic approach to characterize non-Hermitian Floquet topological matter is still lacking. In this work we introduce a dual scheme to characterize the topology of...
Non-Hermitian photonics and topological photonics, as new research fields in optics, have attracted much attention in recent years, accompanying by a great deal of new physical concepts and novel effects emerging. The two fields are gradually crossed dur
Recently, intense research efforts have focused on exploring non-Hermitian systems with cleverly matched gain and loss, facilitating unidirectional invisibility and exotic characteristics of exceptional points3,4. Likewise, the surge in physics using topological insulators comprising non-trivial symmetry-...
Here we show that the Andreev versus Majorana controversy is clarified when framed in the language of non-Hermitian topology, the natural description for quantum systems open to the environment. This change of paradigm allows one to understand topological transitions and the emergence of zero modes ...
Topological phases are enriched in non-equilibrium open systems effectively described by non-Hermitian Hamiltonians. While several properties unique to non-Hermitian topological systems were uncovered, the fundamental role of symmetry in... K Kawabata,S Higashikawa,Z Gong,... - 《Nature Communications...