(original_size - (kernal_size - 1)) / stride 3. nn.ConvTranspose2d nn.ConvTranspose2d的功能是进行反卷积操作 (1)输入格式: nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0,groups=1, bias=True, dilation=1) (2)参数的含义: in_channels(in...
nn.Conv2d(stride=2,kerner_size=3,padding=1) 对一个32x32特征图操作后,拿原本的权重按照相同的设置(stride,padding,kerner_size)对这个输出(16X16)进行一个torch.nn.ConvTranspose2d()操作,本希望输入输出是同样的shape(32X32),但调试时发现ConvTranspose2d()的输出的shape为(31x31),比原始的输入少了1。
在调用nn.ConvTranspose2d的时候注意参数满足上述公式。其中H_out是原始feature map的尺寸,而H_in是输入图像的尺寸,也就是目标尺寸,想要通过上采样达到的尺寸。引用https://www.freesion.com/article/53151034051/ https://www.cnblogs.com/wanghui-garcia/p/10791328.html https://blog.csdn.net/jiongnima/article...
ConvTransposed2d()其实是Conv2d()的逆过程,其参数是一样的 Conv2d(): output = (input+2*Padding-kernelSize) / stride + 1(暂时不考虑outputPadding 注意:outputPadding只是在一边Padding) =>input = (output-1) * stride - 2*Padding + kernelSize 例如输入图片尺寸为128,inputPadding为0,kernelSize为4,...
ConvTranspose2d是其中一个方法。 别名: convTranspose2d是pytorch里的函数名字,代码文档地址(英文版) 论文中,可以称为fractionally-strided convolutions, 也有的称为deconvolutions,但是我不建议大家用后一个,因为这个实际...
首先,假定conv_transpose中的参数为kernel=3,stride=1,padding=0,kernel_matrix=[[0,1,1], [0,1,0],[1,0,1]],根据https://blog.csdn.net/m0_37605642/article/details/135280661中的转换规则,那么对应的conv参数为kernel_conv=3, stride_conv=1(通常取1), padding_conv=kernel-padding-1,kernel_...
我们首先看看它的参数,依然如此得多 其实,转置卷积和普通的卷积操作,参数配置都是很相似的。看几个例子把 1)311型转置卷积: importtorchimporttorch.nnasnn A=torch.rand(1,64,24,24)up=nn.ConvTranspose2d(64,32,3,1,1)B=up(A)print(B.shape) ...
torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros') 1. 2. 3. 其中,各参数的含义如下: in_channels(int):输入张量的通道数 ...
1、conv2d_transpose会根据output_shape和padding计算一个shape,然后和input的shape相比较,如果不同会报错。 2、做转置卷积时,通常input的shape比output_shape要小,因此TensorFlow先把input填充成output_shape大小,再按照padding参数进行填充 stride==1时,外围填充; ...
tf.nn.conv2d_transpose( value, filter, output_shape, strides, padding='SAME', data_format='NHWC', name=None ) 注意要点: 关于tf.nn.conv2d: tf.nn.conv2d的input的shape,假设为[A, B, C, D]。那filter的shape一定为[K, K, D, E],其中A为batch_size, D为输入的channel,K为感受野大小,E...