make_future_dataframe(df_train, periods = test_length, n_historic_predictions=len(df_train))preds_df_2 = nprophet_model.predict(future_df) nprophet_model.plot(preds_df_2); 4.效果比较 NeuralProphet 的效果比 Prophet
AI代码解释 metrics=model.fit(df,validate_each_epoch=True,freq="D")future=model.make_future_dataframe(df,periods=365,n_historic_predictions=len(df))forecast=model.predict(future) 您可以通过调用model.plot(forecast)来简单地绘制预测,如下所示: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 fig,...
训练完成以后,我们可以直接使用NeuralProphet内置的可视化工具将结果画出来。 future=model.make_future_dataframe(prcp_data,periods=30,n_historic_predictions=True)forcast=model.predict(future)forecasts_plot=model.plot(forcast) 模型对整个历史数据的拟合 可以看到,对整个上证指数历史数据的拟合,AR-Net还是做得相当...
future_df = prophet_model.make_future_dataframe(periods=test_length) preds_df_1 = prophet_model.predict(future_df) prophet_model.plot_components(preds_df_1); 1. 2. 3. 4. 5. prophet_model.plot(preds_df_1); 1. 3. NeuralProphet nprophet_model = NeuralProphet() metrics = nprophet_mod...
make_future_dataframe 准备好待预测的数据格式,参数 periods=60,n_historic_predictions=True 意义扩展 df_sp500 到未来60天后,同时保留所有所有现有 df_sp500 的数据点,这些历史点也将做预测。我们 dump 出 make_future_data...
make_future_dataframe(df, periods=30) forecast = m.predict(df_future) fig_forecast = m.plot(forecast) Install You can now install neuralprophet directly with pip: pip install neuralprophet Install options If you plan to use the package in a Jupyter notebook, we recommended to install the ...
metrics = model.fit(df, validate_each_epoch=True, freq="D") future = model.make_future_dataframe(df, periods=365, n_historic_predictions=len(df)) forecast = model.predict(future)您可以通过调用model.plot(forecast)来简单地绘制预测,如下所示:fig, ax = plt.subplots(figsize=(14, 10)) ...
future_df = nprophet_model.make_future_dataframe(df_train, periods = test_length, n_historic_predictions=len(df_train)) preds_df_2 = nprophet_model.predict(future_df) nprophet_model.plot(preds_df_2); 4.效果比较 NeuralProphet的效果比Prophet好了很多。 df_test['prophet'] = preds_df_1....
m=NeuralProphet().fit(df,freq="D")df_future=m.make_future_dataframe(df,periods=30)forecast=m.predict(df_future)fig_forecast=m.plot(forecast) Install You can now install neuralprophet directly with pip: pip install neuralprophet Install options ...
NeuralProphet 是一个可分解的时间序列模型,和 Prophet 相比,类似的组成部分有趋势(trend)、季节性(seasonality)、自回归(auto-regression)、特殊事件(special events),不同之处在于引入了未来回归项(future regressors)和滞后回归项(lagged regressors)。 未来回归项(future-known regressors)是指在预测期有已知未来值的...