我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。 1.1 YOLOv9框架介绍 YOLOv9各个模型介绍 2.NEU-DET数据集介绍 NEU-DET钢材表面缺陷共有六大类,一共1800张, 类别分别为:'crazing','inclusion','patches','pitted_surface'...
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下 parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path') #数据集的划分,地址选择自己数据下的ImageSets/Main parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='o...
NEU-DET是一个专门针对钢材表面缺陷检测的数据集,它为机器学习和计算机视觉领域的研究人员提供了宝贵的资源。这个数据集的主要目标是训练和评估模型在识别钢材表面的六种不同类型的缺陷上的性能。这些缺陷可能包括裂纹、锈蚀、凹痕、麻点、划痕和其他不规则性,这些都是影响钢材质量和安全的重要因素。 YOLO(You Only ...
接下来,需要对NEU-DET.yaml文件进行适当修改以适应自定义数据集,注意路径设置使用全路径。在train.py文件中,根据NEU-DET数据集调整训练参数,确保模型能够有效学习。开启训练过程后,可视化的结果将帮助我们了解模型的训练进度与性能。在整个训练过程中,保持耐心,适时休息以提高效率。利用好上述资源,你将...
东北大学钢材检测数据集NEU-DET 喜爱 0 由东北大学(NEU)发布的表面缺陷数据库,收集了热轧钢带的六种典型表面缺陷,即轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)。该数据库包括1,800个灰度图像:六种不同类型的典型表面缺陷,每一类缺陷包含300个样本。对于缺陷检测任务,数据集提供...
本文主要内容:真正实时端到端目标检测(原理介绍+代码详见+结构框图)| YOLOv10如何训练自己的数据集(NEU-DET为案列) 博主简介 AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富; 原创自研系列, 2024年...
1.钢铁缺陷数据集介绍 NEU-DET钢材表面缺陷共有六大类,分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches' 每个类别分布为: 2.基于YOLOv8的训练 原始网络如下: map@0.5为0.733 2 PConv 2.1 FasterNet介绍 ...
po**on上传29.11 MB文件格式zip深度学习yolo NEU-DET钢材表面缺陷检测数据集 (0)踩踩(0) 所需:30积分 visualstudio安装教程.txt 2024-12-22 02:29:29 积分:1 闪耀星辰唯美梦幻高清手机壁纸 2024-12-22 01:54:27 积分:1 setupres.dll 2024-12-22 01:26:00 ...
3.2 NEU-DET训练自己的YOLOv10模型 3.2.1 数据集介绍 直接搬运v8的就能使用 3.2.2 超参数修改 位置如下default.yaml 3.2.3 如何训练 import warnings warnings.filterwarnings('ignore') from ultralytics import YOLOv10 if __name__ == '__main__': model = YOLOv10('ultralytics/cfg/models/v10/yol...
NEU-DET_Yolo Mar 23, 2024 split_train_val.py NEU-DET_Yolo Mar 23, 2024 voc_labelhrsc.py NEU-DET_Yolo Mar 23, 2024 xml2yolo.py NEU-DET_Yolo Mar 23, 2024 NEU-DET_Yolo 铁轨缺陷检测数据集NEU-DET的Yolo格式 Packages No packages published...