来自专栏 · Python数据分析 朴素贝叶斯模型 朴素贝叶斯模型(Naive Bayes Model, NBM)是一种基于贝叶斯定理和特征条件独立性假设的分类算法。其核心思想是通过给定特征X的条件下,预测样本属于某类别c的后验概率P(c|X),选择后验概率最大的类别作为分类结果。 基本原理 朴素贝叶斯模型的基本原理基于贝叶斯定理
一、基于原生Python实现朴素贝叶斯(Naive Bayes) 朴素贝叶斯(Naive Bayes)算法是一种基于概率论和贝叶斯定理的分类算法。它的核心思想是,对于给定的数据集,通过先验概率和条件概率计算出每个类别的后验概率,然后将样本分配给具有最大后验概率的类别。 朴素贝叶斯算法有多种变体,其中最常见的包括 高斯朴素贝叶斯、多项式朴...
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计...
trainY=iris.target clf=naive_bayes.GaussianNB()#高斯分布,没有参数#clf=naive_bayes.MultinomialNB() #多项式分布clf.fit(trainX,trainY)print"训练准确率:"+str(clf.score(trainX,trainY))print"测试准确率:"+str(clf.score(trainX,trainY))'''训练准确率:0.96 测试准确率:0.96'''...
简介: Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战 说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 1.项目背景 分类是数据挖掘领域最重要的研究方向之一。在如今众多分类模型中,最广泛使用的是朴素贝叶斯模型,源于...
1. Multinomial Naïve Bayes. Accuracy in %: 98.026 2. SVM. Accuracy in %: 98.325 By seeing the above results, we can say that the Naïve Bayes model and SVM are performing well on classifying spam messages with 98% accuracy but comparing the two models, SVM is performing better. ...
naive_bayes.GaussianNB.html ''' model = GaussianNB() # fit the model with the training data model.fit(train_x,train_y) # predict the target on the train dataset predict_train = model.predict(train_x) print('Target on train data',predict_train) # Accuray Score on train dataset accuracy...
Naive Bayes Classifiers(朴素贝叶斯分类器) 在机器学习中,朴素贝叶斯分类器是一个基于贝叶斯定理的比较简单的概率分类器,其中 naive(朴素)是指的对于模型中各个 feature(特征) 有强独立性的假设,并未将 feature 间的相关性纳入考虑中。 朴素贝叶斯分类器一个比较著名的应用是用于对垃圾邮件分类,通常用文字特征来识别...
该步骤在 Scikit-Learn 的 sklearn.naive_bayes.GaussianNB 评估器中实现: from sklearn.naive_bayes import GaussianNBmodel = GaussianNB()model.fit(X, y); 1. 现在生成一些新数据来预测标签: rng = np.random.RandomState(0)Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2)ynew = model.pr...
下面是使用Python中的scikit-learn库实现朴素贝叶斯算法的示例代码: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 pythonCopy codefrom sklearn.datasetsimportload_iris from sklearn.model_selectionimporttrain_test_split from sklearn.naive_bayesimportGaussianNB ...