library(MASS) library(e1071) #因变量因子化与模型拟合 Train$Group<-as.factor(Train$结局) Test$Group<-as.factor(Test$结局) nb.fit<-NaiveBayes(Group ~ 指标1+指标2+指标3+指标4+指标5+指标6, data =Train) nb.fit summary(nb.fit) par(mfrow = c(
一、基于原生Python实现朴素贝叶斯(Naive Bayes) 朴素贝叶斯(Naive Bayes)算法是一种基于概率论和贝叶斯定理的分类算法。它的核心思想是,对于给定的数据集,通过先验概率和条件概率计算出每个类别的后验概率,然后将样本分配给具有最大后验概率的类别。 朴素贝叶斯算法有多种变体,其中最常见的包括 高斯朴素贝叶斯、多项式朴...
直接上Python的源代码。 [python] #Naive Bayes #Calculate the Prob. of class:cls def P(data,cls_val,cls_name="class"): cnt = 0.0 for e in data: if e[cls_name] == cls_val: cnt += 1 return cnt/len(data) #Calculate the Prob(attr|cls) def PT(data,cls_val,attr_name,attr_val...
trainY=iris.target clf=naive_bayes.GaussianNB()#高斯分布,没有参数#clf=naive_bayes.MultinomialNB() #多项式分布clf.fit(trainX,trainY)print"训练准确率:"+str(clf.score(trainX,trainY))print"测试准确率:"+str(clf.score(trainX,trainY))'''训练准确率:0.96 测试准确率:0.96'''...
下面是一个完整的Python实现朴素贝叶斯(Naive Bayes)算法的代码示例,它涵盖了数据预处理、模型训练和预测等各个方面。 importnumpyasnpimportpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.feature_extraction.textimportCountVectorizerfromsklearn.naive_bayesimportMultinomialNBfromsklearn.metricsimpor...
Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes) 朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源...
简介: Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战 说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 1.项目背景 分类是数据挖掘领域最重要的研究方向之一。在如今众多分类模型中,最广泛使用的是朴素贝叶斯模型,源于...
Naive Bayes(朴素贝叶斯) Code:https://github.com/tmac1997/u... Naive Bayes Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示: $$ \begin{align} P(A|B)=\frac{P(B|A)P(A)}{P(B)} \end{align} $$...
Python pyspark NaiveBayes用法及代码示例 本文简要介绍pyspark.ml.classification.NaiveBayes的用法。 用法: classpyspark.ml.classification.NaiveBayes(*, featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', smoothing=1.0, modelType...
机器学习算法实践-朴素贝叶斯(Naive Bayes) 專欄 ❈PytLab,Python中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。