虽然N-grams模型可以让我们更好的去分割出具有更好语意的标识符,进而让我们做进一步文本分析,但是缺点也是同样明显,那就是运用N-grams模型可能让我们的词汇量成指数级的增长,并且并不是所有的Bigram都含有有用信息,而这个情况在甚至乎在Trigram或者Quad gram等含有更多单独字符在内的N-grams模型会更严重。这样子做产...
pip install kenlm 编译安装训练模型可执行文件,参考kenlm . code . Kenneth Heafield wget -O - https://kheafield.com/code/kenlm.tar.gz |tar xz mkdir kenlm/build cd kenlm/build cmake .. make -j2 训练基于字的4-grams模型 kenlm/build/bin/lmplz -o 4 < rmrb_word.txt >rmrb_word_model.arpa...
前向分支维护一个固定大小的2D窗口,以根据Jacobi轨迹生成n-grams;验证分支验证有希望的n-grams。 作者实现了二合一atten mask,以进一步利用GPU的并行计算能力。 4、前向解码无需外部源即可立即生成并验证非常多的n-grams。这虽然增加了步骤的成本,但也提高了接受更长n-grams可能性。 换句话说,前向解码允许用更多的...
虽然N-grams模型可以让我们更好的去分割出具有更好语意的标识符,进而让我们做进一步文本分析,但是缺点也是同样明显,那就是运用N-grams模型可能让我们的词汇量成指数级的增长,并且并不是所有的Bigram都含有有用信息,而这个情况在甚至乎在Trigram或者Quad gram等含有更多单独字符在内的N-grams模型会更严重。这样子做产...