#define PrintNQueenSolNum(N) printf("%2d皇后的解的数量: %7ld\n", N, \ QueenProblem<N>().size()); PrintNQueenSolNum(1); PrintNQueenSolNum(2); PrintNQueenSolNum(3); PrintNQueenSolNum(4); PrintNQueenSolNum(5); PrintNQueenSolNum(6); PrintNQueenSolNum(7); PrintNQueenSolNum(...
queen(); system("pause"); return 0; } 下面的代码跟上面的代码差不多,只是稍微做了一些变化。。上面函数判断棋盘某个位置合法性的时候,valid函数里面的QUEEN可以修改为row的,只需要将前面row行与第row行进行比较就可以了,不需要将所有行都与第row进行比较的。。。下面的代码中的check函数中循环次数是k而不是...
https://academyera.com/n-queen-problem https://www.geeksforgeeks.org/n-queen-problem-backtracking-3/ Jul 6, 2020 at 3:30pm dutch(2548) @TonyCPP, I doubt the OP was looking for help using google. The naive solution will not be fast enough for 1000 queens. ...
/// main.cpp// BackTrack Solution of N-Queens Problem./// Created by Kang on 2020/7/2 at NJUPT.// Copyright © 2020 Kang. All rights reserved.//#include<iostream>#include<cmath>#include<ctime>using namespace std;constint maxSize=10;int x[maxSize];/** Judge if the Queen can b...
为了封装N-Queens问题,创建名为NQueensProblem的Python类。用所需的问题大小初始化该类,并提供以下公共方法: getViolationsCount(positions):计算给定解违反约束的次数 plotBoard(positions):根据给定的解在棋盘上绘制皇后 棋子图片如下所示: 棋子 # 导入必要库 import numpy as np import matplotlib as mpl from matp...
QueenTest(int queenNum) { this.queenNum = queenNum; this.x = new int[queenNum+1];//注意,这里我们从第1行开始算起,第0行不用 backtrack(1);//从第一个皇后开始递归 } /** * 一行一行的确定该行的皇后位置 * @param t */ public void backtrack(int t) ...
The n-queens problem is to place n queens (where n > 0) on an n -by- n chessboard so that no queen is threatened by another one. According to the rules of chess, this is equivalent to the requirement that no two queens be on the same row or the same column or on a common ...
...n后问题的非递归迭代回溯法Backtrack可描述如下: #include #include using namespace std; class Queen{...{ Queen X; X.n = n; X.sum = 0; int *p = new int [n+1]; for(int i=0;in;i++) 76860 广告 云开发个人版 免费体验1个月...
queen(row + 1); //继续探测下一行 该方法由于在探测第i行后,如果找到一个可以放置皇后的位置j后,则会递归探测下一行,结束后则会继续探测i行j+1列,故可以找到所有的N皇后的解。 但是一般来说递归的效率比较差,下面重点讨论一下该问题的非递归实现。
The input contains multiple test cases. Every line begins with an integer N (N<=50), then N integers followed, representing the column number of the queen in each rows. If the number is 0, it means no queen has been set on this row. You can assume there is at least one solution....