不管用MQ/Canal或者MQ+Canal的策略来异步更新缓存,对整个更新服务的数据可靠性和实时性要求都比较高,如果产生数据丢失或者更新延时情况,会造成MySQL和Redis中的数据不一致。因此,使用这种策略时,需要考虑出现不同步问题时的降级或补偿方案。 高并发情况 使用以上策略后,可以保证在单线程/无并发场景下的数据一致性。但是...
4. 数据备份与恢复 数据备份:定期对 MySQL 和 Redis 中的数据进行备份,以便在数据一致性出现问题时能够快速恢复。 5. 使用分布式事务管理工具 在一些复杂的场景下,可以考虑使用分布式事务管理工具来保障 MySQL 和 Redis 数据的一致性,例如使用分布式事务协调器(如 Seata)来管理跨库的事务。 以上是一些常见的保障 My...
定期对MySQL和Redis中的数据进行备份。 在数据一致性出现问题时,能够快速恢复数据。 实现方式: 使用数据库自带的备份工具或第三方备份解决方案。 配置Redis的持久化机制(如RDB或AOF)。 7. 使用分布式事务管理工具 场景描述: 在复杂的分布式系统中,使用分布式事务管理工具(如Seata)来保障跨数据库和缓存的一致性。 实现...
6. 先写 MySQL,通过 Binlog,异步更新 Redis 这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。 这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数...
导致不一致原因: 在高并发的场景下,大量的请求直接访问MySQL很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,MySQL和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。 1、在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。
保持MySQL和Redis数据的一致性的方法通常有以下几种:1. 双写模式(Dual Write)在这种模式下,每当使用应用程序进行写操作时,数据将同时写入MySQL和Redis。这确保了在MySQL和Redis之间的数据同步,但它会增加写入操作的延迟和开销,并且需要应用程序在写入数据之前执行两个不同的操作。2. 读后写模式(Read-Modify-...
Redis和MySQL的数据一致性可以通过使用事务来实现。在执行任何对Redis和MySQL的写入操作的时候,需要创建一个事务,确保在写入到Redis和MySQL之前都处于一个事务之中。如果在执行写入操作时某一个数据库出现问题,则整个事务就会回滚,来保证数据的一致性。此外,当写入到Redis的数据和MySQL的数据需要在同一...
先阐明一下Mysql和Redis的关系:Mysql是数据库,用来持久化数据,一定程度上保证数据的可靠性;Redis是用来当缓存,用来提升数据访问的性能。关于如何保证Mysql和Redis中的数据一致(即缓存一致性问题),这是一个非常经典的问题。使用过缓存的人都应该知道,在实际应用场景中,要想时刻保证缓存和数据库中的数据一样,...
1 先更新数据库,再更新缓存 适用场景:服务器停机状态下可以使用这种方法 在不停机的情况下 可能出现的问题:1 MySQL更新成功 redis失败 举例:先更新了MySQL,假设数量从100改为99,然后回写进redis的时候发生了异常,导致MySQL内是99,redis内还是100,下次读取操作会命中redis,将100返回导致数据不一致 ...
一般情况下,Redis是用作应用程序和数据库之间读操作的缓存,主要目的是减少数据库IO,还可以提升数据的IO性能。如图所示,这是Redis加MySQL的整体架构设计。 ENTER TITLE 当应用程序需要去读取某个数据的时候,首先会先尝试去Redis中加载,如果命中就直接返回。如果没有命中,就从数据库查询,查询到数据后再把这个数据缓存到...