在进行MVMR研究时,我们不建议使用很多的暴露,因为这会带来比较严重的共线性问题,一般3~5个为宜。如果暴露间的共线性问题比较严重,建议使用“TwoSampleMR”包的mv_lasso_feature_selection()函数来帮助你去除不必要的暴露。 关于多变量孟德尔随机化研究就简单介绍到这里,希望对大家有所帮助!
在进行MVMR研究时,我们不建议使用很多的暴露,因为这会带来比较严重的共线性问题,一般3~5个为宜。如果暴露间的共线性问题比较严重,建议使用“TwoSampleMR”包的mv_lasso_feature_selection()函数来帮助你去除不必要的暴露。 关于多变量孟德尔随机化研究就简单介绍到这里,希望对大家有所帮助!发布...
在进行MVMR研究时,我们不建议使用很多的暴露,因为这会带来比较严重的共线性问题,一般3~5个为宜。如果暴露间的共线性问题比较严重,建议使用“TwoSampleMR”包的mv_lasso_feature_selection()函数来帮助你去除不必要的暴露。 参考:多变量孟德尔随机化研究(MVMR)简介...
在进行MVMR研究时,我们不建议使用很多的暴露,因为这会带来比较严重的共线性问题,一般3~5个为宜。如果暴露间的共线性问题比较严重,建议使用“TwoSampleMR”包的mv_lasso_feature_selection()函数来帮助你去除不必要的暴露。 2.中介孟德尔随机化 中介分析:在因果推断中,我们不仅对暴露对结局的影响程度感兴趣,而且对暴...