一、基于原生Python实现多元线性回归(Multiple Linear Regression)算法 多元线性回归是一种用于建立多个自变量与因变量之间关系的统计学方法。在多元线性回归中,我们可以通过多个自变量来预测一个因变量的值。每个自变量对因变量的影响可以用回归系数来表示。 在实现多元线性回归算法时,通常使用最小二乘法来求解回归系数。最小二乘法是一种数学
J_history=np.zeros((num_iters,1))foriterinrange(num_iters):# 对J求导,得到 alpha/m*(WX-Y)*x(i),(3,m)*(m,1)X(m,3)*(3,1)=(m,1)theta=theta-(alpha/m)*(X.T.dot(X.dot(theta)-y))J_history[iter]=computeCost(X,y,theta)returnJ_history,theta iterations=10000#迭代次数 alph...
[Python 金融模型] 2-Linear_Regression-2.1-Load_Data-金融-CFA-FRM-实战 116 -- 4:55 App [Python 金融模型]-2-Linear_Regression-2.3-Calculate_Beta_by_Sklearn-模型-线性回归-CFA 287 -- 10:15 App [Python 量化金融模型] 3-投资组合有效前沿-3.1-数据准备 - CFA-FRM-实战-模型 196 -- 18:09 ...
目录 收起 公式定义 参数估计 统计检验 对回归系数的检验 对回归方程的检验 代码示例 我们在上一篇文章(https://zhuanlan.zhihu.com/p/642186978)中详细介绍了简单线性回归(Simple Linear Regression)的理论基础和代码实现, 现在推广至多元线性回归(Multiple Linear Regression) ...
Univariate Linear Regression in Python Take‘lstat’ as independent and ‘medv’ as dependent variables or Using ‘lstat’ as the predictor and ‘medv’ as the response: Step 1: Load the Boston Dataset import pandas as pd data = pd.read_csv("Boston1.csv") ...
Python for Data Science - Multiple linear regression Chapter 3 - Regression Models Segment 2 - Multiple linear regression importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltfrompylabimportrcParamsimportsklearnfromsklearn.linear_modelimportLinearRegressionfromsklearn.preprocessingimportscale...
回归方程的检验是对整个数据是否适应于线性方程回归的检验,构建统计量 F:[公式]其中,SSR 是回归平方和,SSE 是误差平方和,n 是样本数,m 是自变量的特征数。根据 F 分布求 F 值及对应的置信区间。以下是多元线性回归的 Python 代码示例:以一组数据为例,进行多元线性回归分析:
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn) 表示为: 引入x0=1,则公式 转化为: 1、加载训练数据 数据格式为: ...
Python: Find the longest word in a string I'm preparing for an exam but I'm having difficulties with one past-paper question. Given a string containing a sentence, I want to find the longest word in that sentence and return that word and its ......
Mann Whitney U). Supplementary Fig.4shows there are correlations between the explained variance ratio for each of these three variables. To investigate the importance of these factors in achieving a good model fit, we perform a multiple linear regression (Python, statsmodels.regression.linear_model...