multi-task:训练模型的时候目标是多个相关目标共享一个表征,比如人的特征学习,一个人,既可以从年轻人和老人这方面分类,也可以从男人女人这方面分类,这两个目标联合起来学习人的特征模型,可以学习出来一个共同特征,适用于这两种分类结果,这就是多任务学习 multi-label:打多个标签,或者说进行多种分类,还是拿人举例啊,...
机器学习:详解多任务学习(Multi-task learning) 详解多任务学习 在迁移学习中,步骤是串行的,从任务AA里学习只是然后迁移到任务BB。在多任务学习中,是同时开始学习的,试图让单个神经网络同时做几件事情,然后希望这里每个任务都能帮到其他所有任务。 来看一个例子,假设在研发无人驾驶车辆,那么无人驾驶车可能需要同时检...
transfer learning:定义一个源域一个目标域,从源域学习,然后把学习的知识信息迁移到目标域中,从而提升目标域的泛化效果。迁移学习一个非常经典的案例就是图像处理中的风格迁移。 multi-task:训练模型的时候目标是多个相关目标共享一个表征,比如人的特征学习,一个人,既可以从年轻人和老人这方面分类,也可以从男人女人...
目前,多数关于多任务学习(Multi-task learning)的文章、综述或者paper都聚焦于网络结构的迭代与创新,通常会谈到软参数共享 vs 硬参数共享;或者encoder-based MTL vs decoder-based MTL;然而,对于多任务学习Loss的优化也非常重要。本文希望聊聊这个问题。 2. Optimization in MTL 本科修经济学双学位的时候,学到过关于...
【摘要】 深度学习算法中的多任务学习(Multi-task Learning)引言深度学习算法在各个领域取得了巨大的成功,但在大多数情况下,我们只关注单个任务的解决方案。然而,在现实世界中,往往存在多个相关任务需要同时解决。多任务学习(Multi-task Learning)就是一种能够同时学习多个相关任务的深度学习方法,它可以通过共享模型参数...
背景:只专注于单个模型可能会忽略一些相关任务中可能提升目标任务的潜在信息,通过进行一定程度的共享不同任务之间的参数,可能会使原任务泛化更好。广义的讲,只要loss有多个就算MTL,一些别名(joint learning,learning to learn,learning with auxiliary task)
Multi-taskLearning多任务学习多任务学习和多分类学习不同,从其cost function就能看出。 当训练的一组任务都能够共享一些低等级特征时 当对于每个任务的数据都很相似时(从一幅图像中识别不同的东西,如行人、信号灯、车辆等等) 当能训练足够大的神经网络时 ...
深度学习算法在各个领域取得了巨大的成功,但在大多数情况下,我们只关注单个任务的解决方案。然而,在现实世界中,往往存在多个相关任务需要同时解决。多任务学习(Multi-task Learning)就是一种能够同时学习多个相关任务的深度学习方法,它可以通过共享模型参数来提高整体性能,并且在数据集有限的情况下能够更好地泛化。
从图2可以发现,单任务学习时,各个task任务的学习是相互独立的,多任务学习时,多个任务之间的浅层表示共享(shared representation)。 2、多任务学习的定义 多任务学习(Multitask learning)定义:基于共享表示(shared representation),把多个相关的任务放在一起学习的一种机器学习方法。多任务学习(Multitask Learning)是一种...
transfer learning:定义一个源域一个目标域,从源域学习,然后把学习的知识信息迁移到目标域中,从而提升目标域的泛化效果。迁移学习一个非常经典的案例就是图像处理中的风格迁移 multi-task:训练模型的时候目标是多个相关目标共享一个表征,比如人的特征学习,一个人,既可以从年轻人和老人这方面分类,也可以从男人女人这...