论文标题:Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs PINK:揭示多模态大型语言模型的参照理解能力 论文链接: Pink: Unveiling the Power of Referential Comprehension fo…
由于LLMs无法接受视频输入,它首先使用图像-语言模型将视频内容转换成属性集,然后把检索到的内容转化成pr...
为了解决这一挑战,我们提出利用LLMs和MLLMs的生成能力来合成额外的训练数据。图4 用于合成融合模态训练...
技术进展梳理:系统地回顾和总结LLMs在多模态生成领域的主要技术进展,包括关键技术组件和多模态数据集的研究。 工具辅助多模态代理:探讨如何利用现有的生成模型和LLMs来增强人机交互,提高多模态代理的能力。 AI安全性:全面讨论AI安全性问题,包括减少有害和偏见内容的生成、保护版权和解决由生成模型产生的虚假内容等问题。
内容提示: LLMs for Multi-Modal Knowledge Extractionand Analysis in Intelligence/Safety-CriticalApplicationsBrett Israelsen and Soumalya SarkarRTX Technology Research Center (RTRC)September 2023AbstractLarge Language Models have seen rapid progress in capability in recentyears; this progress has been ...
Compared to general LLMs, Sigma Geography has a deeper understanding of the language patterns, domain-specific terminology and professional knowledge in the field of geography, enabling it to better handle specialized issues, Su said. In addition to answering geographical questions, Sigma Geography can...
Large language models (LLMs) and multi-modal large language models (MLLMs) represent the cutting-edge in artificial intelligence. This review provides a comprehensive overview of their capabilities and potential impact on radiology. Unlike most existing literature reviews focusing solely on LLMs, this...
本论文介绍了LayoutLLM,这是一种基于大型语言模型(LLMs)和多模态大型语言模型(MLLMs)的方法,用于提高对文档的理解能力。LayoutLLM的核心在于一种布局指令调整策略,该策略专门设计用来增强模型对文档布局的理解和利用。这一策略包括布局感知预训练和布局感知监督微调两个主要组成部分,通过这些方法,LayoutLLM能够有效...
该框架利用大型语言模型(LLMs)作为其核心模型,基于LLMs即使在有限数据微调的情况下也能有效地充当虚拟知识库的前提。在GeMKR中,我们通过两步过程检索知识:1) 生成与查询相关的知识线索,2) 使用知识线索在数据库中搜索相关文档。值得注意的是,只有第一步需要神经计算,而第二步是一个明确且高效的数据库操作。通过...
Transfer Learning: LLMs leverage their pre-trained knowledge from textual data to bootstrap their understanding of other modalities. This transfer learning approach allows them to jumpstart their ability to process multi-modal inputs effectively. ...