Transformer 的多头注意力机制(自注意力机制)的 Pytorch 实现。 博客配套视频链接:https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0b 站直接看 配套 github 链接:https://github.com/nickchen121/Pre-training-language-model 配套博客链接:https://www.cnblogs.com/nickchen121/p/15105048.html ...
更多手写代码相关内容: https://github.com/bbruceyuan/AI-Interview-Code ,再次费曼学习一下欢迎关注同名公众号【chaofa用代码打点酱油】 阅读对应的文字稿,可能写得更清楚一点: https://mp.weixin.qq.com/s/BreG55JLSpHZQsEd-VEGlw也欢迎大家阅读原博客;https://bruc
self-attention得到的新的词向量具有语法特征(如making -> more/difficult)和语义特征(如its -> law/application),对词向量的表征更完善。 缺点:计算量变大了。位置编码问题。 三、多头注意力机制:Multi-Head Self-Attention Multi-Head Self-Attention得到的新的词向量可以比Self-Attention得到的词向量有进一步提升。
self.proj_kr = nn.Linear(d_model, rope_head_dim*1) #初始化解耦的q,k对应的rope类,因为头的数量不同,初始化2个实例 self.rope_q = RotaryEmbedding(rope_head_dim * num_heads, num_heads) self.rope_k = RotaryEmbedding(rope_head_dim, 1) # Dropout and final linear layer self.dropout = ...
import torch import torch.nn as nn import torch.nn.functional as F class SelfAttention(nn.Module): def __init__(self, d_model, num_heads): super(SelfAttention, self).__init__() assert d_model % num_…
pytorch的MultiheadAttention应该使用的是Narrow self-attention机制,即,把embedding分割成num_heads份,每一份分别拿来做一下attention。 (例如,embed_dim 是256,num_heads是8,则会分成8份,每一份的维度是32) 也就是说: 单词1的第一份、单词2的第一份、单词3的第一份…会当成一个sequence,做一次我们图1所示的...
# PYthon/PYtorch/你看的这个模型的理论classMultiHeadAttention(nn.Module):def__init__(self):super(MultiHeadAttention, self).__init__()defforward(self, head, d_model, query, key, value, dropout=0.1,mask=None):""":param head: 头数,默认 8:param d_model: 输入的维度 512:param query: Q...
以下是一个使用PyTorch实现Multi-Head Attention的简单示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads ...
其中,Multi-Head Attention是Transformer模型中的一个核心组件,通过并行计算多个注意力机制来捕捉不同特征的相关性。本文将介绍PyTorch中如何使用Multi-Head Attention,并提供一个详细的示例。 1.引言 Multi-Head Attention是自注意力机制的一种扩展,通过在不同的线性投影空间中并行执行多个注意力机制来捕捉复杂的特征关系...
三. 多头自注意力(Multi-Head Self-Attention) 多头自注意力(Multi-Head Self-Attention)是多头注意力的一种,都属于注意力机制在深度学习中的应用,尤其是自然语言处理(NLP)领域的Transformer模型中。 3.1 自注意力就是Q=K=V? 3.2 多头自注意力与多头注意力的区别 ...