single agent RL vs multi-agent RL 1.1 multi-agent RL 问题建模 multi-agent RL 可以被定义为随机博弈问题,用元组(N,S,A,R,P,γ)表示,其中: N是 agent 的数目 S=S1×⋅⋅⋅×SN是所有 agent 的状态集合 A=A1×⋅⋅⋅×AN是所有 agent 的动作集合 R=r1×⋅⋅⋅×rN是所有 agent ...
7Tags Code This branch is556 commits behindhuawei-noah/SMARTS:master. SMARTS SMARTS (Scalable Multi-Agent RL Training School) is a simulation platform for reinforcement learning and multi-agent research on autonomous driving. Its focus is on realistic and diverse interactions. It is part of theXin...
GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Code and appendix can be found in https://github.com/ArronDZhang/FMRL_LA .Zhang, YiCommonwealth Scientific and Industrial Research Organisation (CSIRO)Wang, SenThe University of Queensland, St LuciaChen, ZhiThe University of Queensland, St LuciaXu, Xuwei...
动作决策方面使用了双层动作执行,首先由RL-policy选定出一个Macro-action(宏观动作),然后用启发式算法根据Macro-Action生成若干Atom-action(微观/原子动作)。在网格探索任务中,Macro-action是一个具体的目标网格坐标,对于机器人来说,目标位置是一个宏观指令,它无法被机器人唯一确定的执行(即机器人可以选择多条路径到达...
2025 年是 AI Agent 的元年,我们团队历时 3 个多月,现正式开源Multi-Agent AI 框架,欢迎各位园友前往 GitHub Fork、Star 或提交 PR,共同打造 aevatar.ai 生态。 Github地址: aevatar 核心框架: https://github.com/aevatarAI/aevatar-framework aevatar平台: https://github.com/aevatarAI/aevatar-station...
2025 年是 AI Agent 的元年,我们团队历时 3 个多月,现正式开源Multi-Agent AI 框架,欢迎各位园友前往 GitHub Fork、Star 或提交 PR,共同打造 aevatar.ai 生态。 Github地址: aevatar 核心框架: https://github.com/aevatarAI/aevatar-framework aevatar平台: https://github.com/aevatarAI/aevatar-...
Results from the Paper Edit Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers. Methods Edit Focus Contact us on: hello@paperswithcode.com . Papers With Code is a free resource with all data licensed under CC-BY-...
2025 年是 AI Agent 的元年,我们团队历时 3 个多月,现正式开源Multi-Agent AI 框架,欢迎各位博友前往 GitHub Fork、Star 或提交 PR,共同打造 aevatar.ai 生态。 Github地址: aevatar 核心框架:https:///aevatarAI/aevatar-framework aevatar平台:https:///aevatarAI/aevatar-station ...
竞技场对战:类似于 Chatbot Arena,多个 LLM 在竞技场中互相挑战,并由 AI 来作为裁判,收集的胜负回答可以用于 RLHF 或者 SFT。 协作 多智能体之间也可以通过协作来进行对齐,这里的协作一般需要根据 LLM 想要提升的能力模拟对应的现实场景,模拟过程中会产生大量的合成数据,这些数据可以用来进一步 SFT。代表性的模拟场...