机器学习:详解多任务学习(Multi-task learning) 详解多任务学习 在迁移学习中,步骤是串行的,从任务AA里学习只是然后迁移到任务BB。在多任务学习中,是同时开始学习的,试图让单个神经网络同时做几件事情,然后希望这里每个任务都能帮到其他所有任务。 来看一个例子,假设在研发无人驾驶车辆,那么无人驾驶车可能需要同时检...
multitask learning 案例 multitask learning案例 多任务学习(Multitask Learning,MTL)是机器学习的一种方法,旨在通过同时学习多个相关任务来提高模型的性能。以下是一个多任务学习的案例:假设你正在开发一个自然语言处理(NLP)模型,任务是对文本进行分类,以确定文本的情感极性(积极、消极或中性)以及主题分类(...
本文主要介绍多目标学习(Multi-Task Learning)的一些相关内容,在介绍多目标学习前,先简单介绍单目标任务 ,并且从单目标任务扩展多目标任务。 一个单目标任务(single-task)算法关注的是创建一个模型来预测或分类未知的数据。以两个变量a和b之间的线性回归为例子,作为一个预测模型,将一个变量映射为另一个变量。在预测...
Gradient Surgery for Multi-Task Learning pcgrad考虑了梯度的方向。从梯度向量之间的夹角大小考虑,对不同任务的梯度进行投影裁剪,防止不同任务梯度之间的相互拉扯。 先来说明下任务之间梯度的拉扯即冲突情况: 如果两个梯度在方向上存在冲突,就把任务i的梯度投影到具有冲突梯度的任何其他任务j的梯度的法向量平面上。如...
A multi-task learning example for the paper https://arxiv.org/abs/1705.07115 - cnavyxu/multi-task-learning-example
背景:只专注于单个模型可能会忽略一些相关任务中可能提升目标任务的潜在信息,通过进行一定程度的共享不同任务之间的参数,可能会使原任务泛化更好。广义的讲,只要loss有多个就算MTL,一些别名(joint learning,learning to learn,learning with auxiliary task)
多任务学习(Multi-task learning)简介 是迁移学习(Transfer Learning)的一种,而迁移学习指的是将从源领域的知识(source domin)学到的知识用于目标领域(target domin),提升目标领域的学习效果。而多任务学习也是希望模型同时做多个任务时,能将其他任务学到的知识,用于目标任务中,从而提升目标任务效果。
Multi-task Learning 理论(多任务学习) 一. 多任务学习理论 1.1 多任务学习的定义 如果有n个任务(传统的深度学习方法旨在使用一种特定模型仅解决一项任务),而这n个任务或它们的一个子集彼此相关但不完全相同,则称为多任务学习(以下简称为MTL) 。通过使用所有n个任务中包含的知识,将有助于改善特定模型的学习...
深度学习算法中的多任务学习(Multi-task Learning) 引言 深度学习算法在各个领域取得了巨大的成功,但在大多数情况下,我们只关注单个任务的解决方案。然而,在现实世界中,往往存在多个相关任务需要同时解决。多任务学习(Multi-task Learning)就是一种能够同时学习多个相关任务的深度学习方法,它可以通过共享模型参数来提高整...
多任务学习(multi task learning)简称为MTL。简单来说有多个目标函数loss同时学习的就算多任务学习。多任务既可以每个任务都搞一个模型来学,也可以一个模型多任务学习来一次全搞定的。 作者丨Anticoder@知乎 链接丨https://zhuanlan.zhihu.com/p/59413549