2019年11月论文“Fast Transformer Decoding: One Write-Head is All You Need“,谷歌工作。 Transformer神经序列模型中使用的多头注意层,是RNN的替代。虽然整个序列的并行性让这些层的训练通常快速而简单,但由…
Multi Query Attention(MQA)和Multi Head Attention(MHA)只差了一个单词,就是从「Head」变成了「Query」。 MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。 代码: classMultiheadAttention(nn.Module):def__init__(self,d_mod...
MQA的原理很简单,它将原生Transformer每一层多头注意力的Key线性映射矩阵、Value线性映射矩阵改为该层下所有头共享,也就是说K、V矩阵每层只有一个。举例来说,以ChatGLM2-6B为例,一共28层,32个注意力头,输入维度从4096经过Q、K、V矩阵映射维度为128,若采用原生多头注意力机制,则Q、K、V矩阵各有28×32...
说明书 生活娱乐 搜试试 续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 其他 multi-query attention原理multi-query attention原理 翻译:多查询注意力 ©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
为此,ChatGLM2提出了Multi-Query Attention(多查询注意力)机制,以进一步提升模型在复杂交互场景中的性能。一、背景与挑战随着深度学习技术的不断发展,对话系统的交互性能要求也越来越高。传统的单轮Attention机制在处理多轮对话时,难以捕捉到对话的上下文信息,导致模型在理解对话意图和生成响应时出现偏差。为了解决这一...
多查询注意力(MultiQuery Attention,MQA)和分组查询注意力(GroupQueryAttention,GQA)是在近年来对Transformer模型的改进中引起关注的新技术。MQA最早于2019年的论文《FastTransformer Decoding: One Write-Head is All YouNeed》中提出,旨在解决Transformer增量推理阶段效率低下的问题。虽然当时并没有引起广泛关注,但随着近...
Multi-Query Attention 阅读笔记 《Fast Transformer Decoding: One Write-Head is All You Need》 核心贡献:优化 multi-head attention 为文中命名的 multi-query attention,减少多head相关运算,不降低精度 且 大幅提升解码速度。 具体对比如下: multi-head attention:...
multi-query-attention Star Here are 2 public repositories matching this topic... Language:All M-e-r-c-u-r-y/pytorch-transformers Star13 Code Issues Pull requests Collection of different types of transformers for learning purposes transformerspytorchmulti-head-attentioneinsum-notationmulti-query-...
多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。 在多头注意力中,输入序列首先通过...
多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。 在多头注意力中,输入序列首先通过三个不同的线性变换层分别得到Query、Key和Value。然后,这些变换...