传统的 multi-label learning (MLL) 的研究热门时间段大致为 2005~2015, 从国内这个领域的大牛之一 Pro...
也有extreme multi-label learning (XML),multiple complementary label learning,streaming label learning,m...
When collecting multi-label annotations, it may be more efficient for a crowd worker to mark the presence of a specific class as opposed to confirming its absence. Our setting is most closely related to positive-unlabeled (PU) learning [33] – see [1] for a recent survey focused on ...
Extreme Multi-Label Classification is also opened up new challenge to reformulate existing machine learning problems like ranking, tagging and recommendation. This survey paper focuses on approaches and reviewing current research challenges on extreme Multi Label Classification. Also discussed state-of-the-...
Multi-label learningDeep learningDeep hashContent-based image retrieval (CBIR) aims to display, as a result of a search, images with the same visual contents as a query. This problem has attracted increasing attention in the area of computer vision. Learning-based hashing techniques are amongst ...
Multi-Label Transfer Learning for Semantic Similarity 损失计算为J1 + J2。 创新 多标签学习是多任务学习的一个子集,其中所有任务的输入数据都是相同的。本文的新颖之处在于在同一轮前向传播和反向传播中将每一维的损失汇聚到一起。该方法相较于传统的方法...上联合训练模型。这与传统的多任务学习设置不同,在传...
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated ob...
S. (2010). A literature survey on algorithms for multi-label learning. Oregon State University, Corvallis.多标签分类模型的评价标准在实际应用中具有重要意义,因为不同的评价指标可以从不同角度对模型进行评估,帮助我们更好地理解模型性能并进行改进。在本文中,我们将进一步讨论多标签分类模型的评价标准,并结合...
论文笔记——A Survey on Text Classification_From Shallow to Deep Learning 论文笔记——A Survey on Text Classification_From Shallow to Deep Learning 1.1 摘要 回顾了1961年至2020年的最新研究方法,重点关注从浅学习到深度学习的模型。我们根据所涉及的文本和用于特征提取和分类的模型,建立了文本分类方法。
多模态机器学习,英文全称 MultiModal Machine Learning (MMML) 模态(modal)是事情经历和发生的方式,我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,当研究的问题或者数据集包含多种这样的模态信息时我们称之为多模态问题,研究多模态问题是推动人工智能更好的了解和...