sklearn实现线性回归时默认采用R2指标。R2越大,表示模型越好。 R2的好处在于其结果进行归一化,更容易看出模型间的差距。 R2≤1 R2越大越好。当我们预测的模型完全准确时,R2等于最大值1 当R2<0时,说明模型还不如基准模型,很可能数据不存在任何线性关系 # 自定义defR2(y_true, y_pred): u = np.sum((y_t...
均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差 平均绝对误差(MAE)用来衡量预测值与真实值之间的平均绝对误差,MAE越小表示模型越好,其定义如下: 4,R2分数 sklearn在实现线性回归时默认采用了...
而RMSE经过了平方再开方,其数值会比MAE略大一点。 二、R²的含义和计算 我们已经可以利用MSE等指标计算模型预测值和实际值的差异了,看起来好像已经够用了,但是我们得到的是个数值,这个数可能是50、100,也可能是一万、八千,那么到底什么样的数值才是合理的呢? 只看MSE等求和类的指标的话,就显得不够直观了,我们...
决定系数R2 score(R^2 score)当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏,此时就需要用到决定系数R2 score。R2 score(即决定系数)反映因变量的全部变异能通过回归关系被自变量解释的比例。R2 score的值介于0和1之间,越接近1表示模型的拟合效果越好。R2 score还有另外一个名字叫做Coefficient of Determination。...
这个式子的结果就是第一个模型评价指标:均方误差 MSE(Mean Squared Error)。 针对上面举例的两个模型,他们的 MSE 分别是 10(100/10)和 4 (200/50),所以后者模型效果更好。 2、均方根误差:RMSE(Root Mean Squard Error) 但是,MSE公式有一个问题是会改变量纲。因为公式平方了,比如说 y 值的单位是万元,MSE...
RMSE(Root Mean Square Error)均方根误差 衡量观测值与真实值之间的偏差。常用来作为机器学习模型预测结果衡量的标准。如果存在个别偏离程度非常大的离群点( Outlier)时,即使离群点数量非常少,也会让RMSE指标变得很差。 MSE(Mean Square Error)均方误差
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...
一,评价回归模型的指标 1,均方误差 均方误差(MSE)的定义如下, 2,均方根误差 均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差
一、MSE、RMSE、MAE的含义和计算 我们以一个预测气温的回归模型为例,模型计算出未来15天的气温(预测值),15天过后我们可以得到每天的实际气温(实际值),我们以此数据为基础,来计算该模型预测值与实际值的差异。 最直接的计算方式,就是计算每天气温的差值,并把差值相加即可。
2、均方根误差(Root Mean Square Error,RMSE) 3、平均绝对误差(Mean Absolute Error,MAE) MAE=1n∑i=1n|yi−yi~|,∈[0,+∞) 4、R2分数(1-模型没有捕获的信息量占真实标签中所携带的信息量的比例) 分母是真实值的方差,方差越大,携带信息量越多。R2越接近1越好,模型极差情况下会小于0。