RMSE=√(MSE) 均方根误差与均方误差类似,也是表示预测值与真实值之间的差异,但是它能够更直观地表示误差的大小。与均方误差相比,均方根误差更容易理解和解释。 3.平均绝对误差(MAE): 平均绝对误差是另一种常用的评价回归模型的指标,它表示预测值与真实值之间差异的绝对值的平均值。 MAE=(1/n)*Σ,y_i-ŷ...
MAE,即平均绝对误差,是另一种常见的回归损失函数。与MSE不同,MAE计算的是预测值与实际值之差的绝对值之和的平均值。这种计算方式使得MAE对异常值的敏感度大大降低,因此更加稳健。然而,MAE的梯度在大多数情况下都是常数,这可能导致模型在训练后期难以收敛到最优解。 应用场景:当数据中存在较多的异常值,或者我们更...
MSE的单位是原始数据单位的平方,尽管它提供了误差的平方平均,但由于单位变化,其解释性较差。为了便于解释,通常会使用均方根误差(RMSE),即MSE的平方根,使得误差单位回归到原始数据的单位。 2.3 数学特性 MAE在优化过程中具有较好的鲁棒性,因为它的损失函数是一条折线,具有平滑的梯度。这在一些优化算法中,如梯度下降...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。 MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE; RMSLE: 主要针对数据集中有一个特别大的...
MSE(均⽅误差)、RMSE(均⽅根误差)、MAE(平均绝对误 差)1、MSE(均⽅误差)(Mean Square Error)MSE是真实值与预测值的差值的平⽅然后求和平均。范围[0,+∞),当预测值与真实值完全相同时为0,误差越⼤,该值越⼤。import numpy as np from sklearn import metrics y_true = np.array([1...
MSE与MAE的区别与选择 1.均方误差(也称L2损失) 均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和,公式如图。 2.平均绝对值误差(也称L1损失) 平均绝对误差(MAE)是另一种用于回归模型的损失函数。MAE是目标值和预测值之差的绝对值之和。其只衡量了预测值误差的平均模长,而不考...
MAE(y_true, y_pred)# 0.5 二、均方误差 MSE 均方误差(MSE)同样是衡量预测值与真实值之间的差距。 # 测试数据y_true = [3, -0.5,2,7] y_pred = [2.5,0.0,2,8]# sklearnfromsklearn.metricsimportmean_squared_errorprint(mean_squared_error(y_true, y_pred))# 0.375# 自定义importpandasaspdimpo...
MSE (Mean Squared Error)叫做均方误差。 这里的y是测试集上的。 用 真实值-预测值 然后平方之后求和平均。 猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!! 对,在线性回归的时候我们的目的就是让这个损失函数最小。那么模型做出来了,我们把损失函数丢到测试集上去看看损失值不就好了嘛。
下图是MSE函数的图像,其中目标值是100,预测值的范围从-10000到10000,Y轴代表的MSE取值范围是从0到正无穷,并且在预测值为100处达到最小。 MSE损失(Y轴)-预测值(X轴) 平均绝对值误差(也称L1损失) 平均绝对误差(MAE)是另一种用于回归模型的损失函数。MAE是目标值和预测值之差的绝对值之和。其只衡量了预测值误...
在解决回归问题时,我们可能会使用R平方(R2)、均方根误差(RMSE)、均方误差(MSE)和均方根误差(MAE)这三个评估指标。 如今的我,在使用它们时,并不会考虑很多。我只知道它们是通用的度量标准,但还并没有搞清楚什么时候该使用哪一个。也因此,这篇笔记仅仅用作记录我所学。 1、均方误差:MSE(Mean Squa... ...