#include <mpi.h> #include <stdio.h> int main(int argc, char** argv) { int rank, size; int local_value = 10; // 每个进程的本地值 int global_sum; // 全局求和结果 MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank
使用MPI_Allreduce函数,所有进程将这些值相加,并将结果存储在global_sum中。然后,每个进程都会打印出全局求和的结果。 Allreduce函数在并行计算中的作用和优势 Allreduce函数在并行计算中的作用是汇总各个进程的计算结果,并将结果广播给所有进程。这在进行全局聚合操作(如求和、求最大值等)时非常有用。其优势包括: ...
} MPI_Finalize(); return 0; } ``` 在这个示例中,每个进程都定义了一个包含4个整数的数组。然后,MPI_Allreduce 函数被调用来计算所有进程中数组元素的总和,并将结果存储在 sum_array 数组中。最后,只有进程0打印了数组的总和。这是一个非常简单的示例,MPI_Allreduce 函数可以用于更复杂的数据类型和操作。...
数字存储按照在原来整数中相反的顺序,使得第一个数字位于链表的开头。写出一个函数将两个整数相加,用链...
使用MPI_Allreduce出现了一个历史上没有碰到过的问题,在mpich下windows,linux都没有问题,但是用openmpi的时候却出现了问题: 图片放大之后如下: 也就是说编译的时候没问题,运行的时候产生了错误,而且是并行错误 An error occurred in MPI_Allreduce: the reduction operation MPI_SUM is not defined on the MPI_...
reduce_avg mpirun -n 4 ./reduce_avg 100 Local sum for process 0 - 51.385098, avg = 0.513851 Local sum for process 1 - 51.842468, avg = 0.518425 Local sum for process 2 - 49.684948, avg = 0.496849 Local sum for process 3 - 47.527420, avg = 0.475274 Total sum = 200.439941, avg = ...
MPI_Reduce(&local_sum,&global_sum,1,MPI_FLOAT,MPI_SUM,0, MPI_COMM_WORLD); // Print the result if(world_rank==0){ printf("Total sum = %f, avg = %f\n",global_sum, global_sum/(world_size*num_elements_per_proc)); } 在上面的代码中,每个进程都会创建随机数并计算和保存在local_sum...
# MPI_Op : MPI_SUM Translate In response to MetMan 0 Kudos Copy link Reply TobiasK Moderator 08-30-2024 06:57 AM 1,467 Views As I mentioned above, please try with the latest release version which is 2021.13.1 oneAPI 2024.2.1. Also make sure that your MLX stack is ...
After 24 steps, all 25 ranks now have the same sum in their local buffers. The total data traffic for this algorithm is 24*64MiB (~1.61e9 Bytes) sent by each task and 24*64MiB received by each task. At the minimum timing of 0.298 seconds, this corresponds to a sustained bandwidth of...
Thegopfunction allows us to perform any associative binary operation on a variable that is defined on all the labs. This allows us not only to sum a variable across all the labs, but also to find its minimum and maximum across the labs, concatenate them, and perform many other useful oper...