在每个控制循环中的双足支撑阶段,系统会使用一种最小抖动三次贝塞尔曲线方法(minimum jerk Bezier curve)在整个时域内更新期望的摆动脚轨迹p^*(t),这些曲线经过调整,以便在抬脚与着地时,脚速度和加速度与接触表面的法线共线,使整个脚部区域同时与地面接触。 【实验】 1.实验设置 在实验中,机器人需要跟踪用户定义...
前言 上一章介绍了一种高效、实时的运动规划算法——JerkLimitedTrajectory(JLT)。 在给定起始状态与终止状态后,该算法能够快速地计算出一条符合三阶积分器动力学模型的运动轨迹。其适用于类似多旋翼无人机的对象,能够解决一般的运动规划问题。 然而,其存在一定的局限性,如: 轨迹平滑度与MAX_JERK之间存在不可调和的...
active speed synchronization by drive motor, (IV) engaging to new gear, and (V) resuming the drive motor’s power, among which the phases I and V have evident impact on the system jerk. Then, the MPC-based control method is adopted for these phases, and the fast compensation of driving...
jerk_ reference 、纵向加加速度反馈 lon_jerk 、加加速度误差 jerk_error do ble jerk_ reference = (deb g-acceleration_ reference() - previo s_acceleration_ reference_) / ts_ ; do ble lon_jerk = (deb g-acceleration_feedback() - previo s_acceleration_) / ts_ ; deb g-set_jerk_ ...
MPC本质是对优化问题进行建模的思想,其求解依赖于一个迭代的solver,对于线性MPC问题而言,一般会将线性MPC问题构造成标准的QP问题的形式进行求解,下面对线性MPC问题进行建模,并将其构造成标准的QP问题形式。 完全线性的MPC问题 不失一般性,考虑以下线性的轨迹追踪(本质上和轨迹优化问题是等价的)的MPC问题 ...
在前面章节中,已经介绍了好几种车辆的MPC控制方法,有动力学模型的横纵向协同的MPC控制,运动学模型的横向MPC控制,这篇基于车辆运动学模型的横纵向协同的MPC控制文章主要是为了完善前面几篇文章中所不足的地方,采用车辆运动学模型对车辆进行横纵向控制。关于MPC控制的原理,在前面文章中也介绍了好多次了,这里不再介绍,...
Four wheel steering and four wheel drive (4WS4WD) vehicles are over-actuated systems with superior performance. Considering the control problem caused by the system nonlinearity and over-actuated characteristics of the 4WS4WD vehicle, this paper presents two methods to enable a 4WS4WD vehicle to ...
Experimental Validation of Minimum Time-jerk Algorithms for Industrial Robots. J. Intell. Robot. Syst. 2011, 64, 197–219. [CrossRef] 3. Guoa, Q.; Yub, T.; Jiangc, D. Robust H∞ positional control of 2-DOF robotic arm driven by electro-hydraulic servo system. ISA Trans. 2015, 59...
The smoother change of lateral acceleration achieved by MPC-SQP controller reduces the jerk effect, decreasing the deviation from the reference path. The angular velocities are demonstrated in Figure 11e, in which the MPC-SQP has higher accuracy and a smoother manner, compared with that of the ...
The complete control system tracked position and yaw angle and their derivatives of up to fourth order, specifically velocity, acceleration, jerk, snap, and yaw rate and yaw acceleration. That required, however, a significant hardware modification of the drone: adding four high-resolution optical ...