而Turn-off动作则在LS侧VG OFF时开始,LS侧的CGS蓄积的电荷开始放电,当达到SiC MOSFET的平台电压(进入米勒效应区)时,LS侧的VDS开始上升,同时VSW上升。 在这个时间点,大部分负载电流仍在LS侧流动(波形图T4),HS侧的寄生二极管还没有转流电流。LS侧的CDS+CGD充电(HS侧为放电)完成时,VSW超过输入电压(E),HS侧的...
而Turn-off动作则在LS侧VG OFF时开始,LS侧的CGS蓄积的电荷开始放电,当达到SiC MOSFET的平台电压(进入米勒效应区)时,LS侧的VDS开始上升,同时VSW上升。 在这个时间点,大部分负载电流仍在LS侧流动(波形图T4),HS侧的寄生二极管还没有转流电流。 LS侧的CDS+CGD充电(HS侧为放电)完成时,VSW超过输入电压(E),HS侧...
而Turn-off动作则在LS侧VG OFF时开始,LS侧的CGS蓄积的电荷开始放电,当达到SiC MOSFET的平台电压(进入米勒效应区)时,LS侧的VDS开始上升,同时VSW上升。 在这个时间点,大部分负载电流仍在LS侧流动(波形图T4),HS侧的寄生二极管还没有转流电流。LS侧的CDS+CGD充电(HS侧为放电)完成时,VSW超过输入电压(E),HS侧的...
显然,我们需要把MOSFET的上升和下降时间最小化。这两个参数取决于于米勒电容,它通常由门极-漏极间电荷(Qgd)来表示,其中,Qgd越低,就会导致MOSFET的开关速度越快。 LS MOSFET中的开关损耗与传导损耗相比宁可忽略不计, 因为Vin为12V而Vd大约为1V。 在这种情形下,对HS MOSFET我们必须选择具有尽可能最低的Qgd。通过...
根据你的驱动电阻R1的值和米勒平台电压可以把电流i计算出来。米勒平台电压Vsp也可以在MOS管的datasheet中可以查到。 然后再根据你的实际驱动电压(实际上就是近似等于芯片Vcc供电电压),实物电压做出来之前,在理论估算阶段可以自己先预设定一个,比如预设15V。我们计算时把Vth到Vsp这一段把它近似看成都等于Vsp,然后就很...
在开关速度和负载电流方面,有一些重要的方面需要考虑。在中低电流时,关断特性主要受负载电流影响,栅极电阻的影响不大。这是因为在米勒阶段,当器件的输出电容Coss被低恒定电流充电时,较低的Rg,ext并不能加快充电速度。这就解释了为何在低Rg,ext值时,低电流的开关瞬态相对较慢。
Turn-off动作从LS侧VG OFF时开始,LS侧的CGS蓄积电荷开始放电,当达到SiC MOSFET的平台电压(进入米勒效应区)时,LS侧的VDS开始上升,同时VSW上升。 在这个时间点,大部分负载电流仍在LS侧流动(波形图T4),HS侧的寄生二极管还没有开始导通。LS侧的充电(HS侧放电)完成后,VSW超过输入电压(E),HS侧的寄生二极管Turn-on...
表4为SiC MOSFET和Si IGBT器件动态参数,图8所示为选取IKW25T120与C2M0080120D的C-V曲线,从表格可以看出SiC MOSFET 的Crss(米勒电容)明显小于Si IGBT。对比发现由于Si IGBT有较大的Ciss,会导致器件的开通时间与关断拖尾时间较长,则其开关能量就会明显大于SiC MOSFET。但同时需要注意的是SiC MOSFET的快速开关,也会导...
米勒平台期间,功率MOSFET管工作在放大状态,即线性区。 功率MOSFET管开始工作的电流为10 A,使用器件为AO4488,失效的形态如图4(c)所示。当功率MOSFET管工作在线性区时,它是负温度系数[2],局部单元区域发生过流时,同样会产生局部热点。温度越高,电流越大,致使温度进一步增加,导致过热损坏。可以看出,其损坏的热点的...
该参数表征的是在栅开启后在线性区域运作的时间,可对应于QG曲线的米勒平台时段。 关断延迟时间td(off): 从VG下降到其施加总值的90%开始,到VD上升到其幅值的10%为止的时间。 该参数是栅开启电压从饱和区域(一般为10V)下降到线性区域(米勒平台)时所需的时间。