model-based算法就是专门解决sample-efficiency问题,通过先对环境建模,然后利用环境模型与agent进行交互,采集轨迹数据优化策略,整个建模流程中,planning步骤至关重要,正是通过在learned model基础上做planning才提高了整个强化学习算法迭代的效率,但是环境模型在学习过程中难免存在偏差;难以保证收敛 → 建模过程的复杂性 ...
一、Model-Free vs Model-Based 从这一章开始,我们进入这个系列教程对RL的分类体系中的第三个类别:基于模型的强化学习(Model-Based Reinforcement Learning, MBRL)。 与之相对地,我们之前介绍的那些方法,可以称作无模型强化学习(Model-Free RL),因为它们直接学习策略函数或者价值函数,并没有对环境进行建模。也就是...
Model-free RL直接从真实样本中学习value function,Model-Based RL直接从真实样本中学习model,然后借助model生成虚拟的样本,借助虚拟样本来plan获得value function。那能否结合一下?这就是Dyna的思想,即从真实样本中学习一个model,model生成虚拟样本,再同时借助虚拟和正式样本进行learning和planing以获得value function,算法...
在学习强化学习的过程中,有两个名词早晚会出现在我们面前,就是Model-Based和Model-Free。在一些资料中,我们经常会见到“这是一个Model-Based 的算法”或者“这个方法是典型的Model-Free的算法”的说法。“Model-Based”通常被翻译成“基于模型”,“Model-Free”通常被翻译成“无模型”。可能有人会问:为什么会有这...
Model-based学习算法基于马尔可夫决策过程(MDP)的完整定义,包括状态转移和奖励函数的建模,这需要对环境有一个准确的描述或估计。相比之下,Model-free学习方法如Q-learning和策略梯度算法,仅基于从环境中收集到的奖励信息,不需要对状态转移概率进行建模。 2.学习过程与效率 ...
Model-based强化学习通过一个代理(agent)来尝试理解环境,并且建立模型来表示这个代理。这个模型希望学习到两个函数: 状态转移函数(transition function from states ) 报酬函数(reward function ) 通过这个模型,代理可以进行根据它进行推导和行动。 Model-free强化学习则是直接学习策略(policy),相关的算法有Q-learning、po...
上次讲到强化学习的问题可以分成model-based和model-free两类,现在我们先看看model-based,我们复习一下强化学习的3个组成部分:model,policy和value function: model:包括状态转移模型和奖励模型; policy:从状态到决策的函数(或映射); value function:指的是处于某个状态的时候未来收益的折现期望值; ...
强化学习课程学习(4)——基于Q表格的方式求解RL之Model-Based类型的方法,程序员大本营,技术文章内容聚合第一站。
梳理之前关于model-based强化学习的几个迭代版本 探索如何学习基于模型强化学习的全局策略,局部策略。 探索将全局和局部策略结合起来的算法,包括GPS(Guided Policy Search)与Policy distillation。 1. 基于模型的强化学习的几个迭代版本 首先回顾下之前所提到的model-based RL的几个版本。
Continuous Deep Q-Learning with Model-based Acceleration 本文提出了连续动作空间的深度强化学习算法。 开始正文之前,首先要弄清楚两个概念:Model-free 和 Model-based。引用 周志华老师的《机器学习》中的一段话来解释这个概念,