model-based算法就是专门解决sample-efficiency问题,通过先对环境建模,然后利用环境模型与agent进行交互,采集轨迹数据优化策略,整个建模流程中,planning步骤至关重要,正是通过在learned model基础上做planning才提高了整个强化学习算法迭代的效率,但是环境模型在学习过程中难免存在偏差;难以保证收敛 → 建模过程的复杂性 ...
在强化学习中,所谓的基于模型model-based是指智能体能够学习环境或者给定环境的模型,这里的环境模型是指能够预测状态转移概率以及奖励的函数。本章将介绍基于动态规划思想的model-based方法来解决简单的强化学习问题。 1. 动态规划思想 利用动态规划的方法可以解决的问题需要满足两个条件: 整个优化问题可以分解为多个子优化...
Model-based方法通常需要更多的先验知识和计算资源来构建模型,但是一旦模型建立,它可以通过模拟来快速学习最优策略。Model-free方法学习过程较慢,因为它们需要通过大量的试错来直接从经验中学习。 3.适应性与泛化能力 当环境发生变化时,Model-based策略能够通过更新其模型来适应这些变化,而Model-free策略则需要重新学习。...
在学习强化学习的过程中,有两个名词早晚会出现在我们面前,就是Model-Based和Model-Free。在一些资料中,我们经常会见到“这是一个Model-Based 的算法”或者“这个方法是典型的Model-Free的算法”的说法。“Model-Based”通常被翻译成“基于模型”,“Model-Free”通常被翻译成“无模型”。可能有人会问:为什么会有这...
1. Model-Based RL1.1 Introduction之前我们学习的都是Model-Free的方法,即我们需要通过一些来自真实环境的experience来学习 value function 以及 Policy来解决某个问题。而Model-Based的方法则是借助来自真实环境的experience来学习一个model(图中卡通的地球),然后借助这个学到的model进行决策。
下面介绍一下model-based的情况。 也就是说我们知道了世界的运转规律,在这个基础上找到最优的策略,使得value function取到最优值。 一般来说,强化学习的模型包括两个:决策模型和奖励模型。 如果是用马尔科夫模型,那么就是Markov Decision Process和Markov Reward Process,即MDP和MRP。
Model-based强化学习通过一个代理(agent)来尝试理解环境,并且建立模型来表示这个代理。这个模型希望学习到两个函数: 状态转移函数(transition function from states ) 报酬函数(reward function ) 通过这个模型,代理可以进行根据它进行推导和行动。 Model-free强化学习则是直接学习策略(policy),相关的算法有Q-learning、po...
除了model-freelearning,哺乳动物还能进行更复杂的学习——在已知环境的统计特征(例如,状态转移概率)下的强化学习过程为model-based RL。 Model-based RL的神经机制 行为学实验表明,对于哺乳动物,若当前任务与其先前所学的某一任务类似时,学习所需的时间更短。...