MobileNetV3-Small(低资源用例) 完整网络结构 MobileNetV3-Large网络结构图 input: 输入层特征矩阵的shape operator: 表示的是操作,对于第一个卷积层conv2d NBN: 最后两个卷积的operator提示NBN,表示这两个卷积不使用BN结构,最后两个卷积相当于全连接的作用 最后的conv2d 1x1: 相当于全连接层的作用 exp size 代表...
通过上面的方式,最终得到的MobileNet v3-Large和MobileNet v3-Small的结构分别如表1和表2所示。其中SE表示是否使用Squeeze-and-excitation操作。NL表示激活函数的类型,类型RE表示ReLU,HS表示h-swish。s表示步长,NBN表示不使用batch normalization操作。 表1:MobileNet v3-Large 表2:MobileNet v3-Small 1.4 Lite R-ASPP...
图9 MobileNet v3 Small结构图 图9中,exp size表示经Inverted bottleneck中第一个1x1卷积输出的通道数(该值除以输入通道数就等于扩张系数,对应于图5中的参数t);SE表示该层是否采用SE block结构;NL表示非线性激活函数,其中RE表示ReLU6,HS表示Hard-Swish;s表示步长。 MobileNet v3的配置文件此处。 参考 ^MobileNets...
修改了MobileNetV2后端输出head; 整体结构 上图为MobileNetV3的网络结构图,large和small的整体结构一致,区别就是基本单元bneck的个数以及内部参数上,主要是通道数目。 small和large版本参数 上表为具体的参数设置,其中bneck是网络的基本结构。SE代表是否使用通道注意力机制。NL代表激活函数的类型,包括HS(h-swish),RE(...
MobileNet V3-Small网络结构图可视化结果见推文最后的图片。 实验 分类都在ImageNet上面进行测试,并将准确率与各种资源使用度量(如推理时间和乘法加法(MAdds))进行比较。推理时间在谷歌Pixel-1/2/3系列手机上使用TFLite运行测试,都使用单线程大内核。下面的Figure1展示了性能和速度的比较结果。
再看MobileNet-v3,上图为large,下图为small。按照刚刚的思路,这里首先将特征进行Pooling,然后再通过1x1卷积抽取用于训练最后分类器的特征,最后划分到k类。作者的解释是: This final set of features is now computed at 1x1 spatial resolution instead of 7x7 spatial resolution. ...
网络结构 开头提到这篇论文提出了2种结构,一种Small,一种Large。结构如Table1和Table2所示: MobileNet V3-Small网络结构图可视化结果见推文最后的图片。 实验 分类都在ImageNet上面进行测试,并将准确率与各种资源使用度量(如推理时间和乘法加法(MAdds))进行比较。推理时间在谷歌Pixel-1/2/3系列手机上使用TFLite运行...
3. MobileNetV3的结构图示 (末尾有两种解释) MobileNetV3架构包含两种变体:MobileNetV3 Large和MobileNetV3 Small。 MobileNetV3 Large和Small在架构上是为了适应不同类别的图像分类任务而设计的。MobileNetV3 可以很好地处理多达1000个类别的图像分类任务。因此它在大规模分类问题上具有很好的效果,例如ImageNet数据集,该数...
MobileNetV3 架构的实现严格遵守了原始论文中的设定,支持用户自定义,为构建分类、目标检测和语义分割 Backbone 提供了不同的配置。它的结构设计与 MobileNetV2 类似,两者共用相同的构建模块。 开箱即用。官方提供了两种变体:Large 和 Small。二者是用相同的代码构建的,唯一的区别是配置(模块的数量、大小、激活函数等)...
卷积神经网络CNN已经普遍应用在计算机视觉领域,并且已经取得了不错的效果,图1为近年来CNN在ImageNet竞赛的表现,可以看到为了追求分类准确度,模型深度越来越深,模型复杂度也越来越高,如深度残差网络(ResNet)其层数已经多达152层。 然而,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首...