图9 MobileNet v3 Small结构图 图9中,exp size表示经Inverted bottleneck中第一个1x1卷积输出的通道数(该值除以输入通道数就等于扩张系数,对应于图5中的参数t);SE表示该层是否采用SE block结构;NL表示非线性激活函数,其中RE表示ReLU6,HS表示Hard-Swish;s表示步长。 MobileNet v3的配置文件此处。 参考 ^MobileNets...
# mobileNetV3的small模型,参数描述在上一节最后文字部分 elif model_name == "small": cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'relu', (small_stride[0], 1)], [3, 72, 24, False, 'relu', (small_stride[1], 1)], [3, 88, 24, False, 'relu', 1], [5, ...
上图为MobileNetV3的网络结构图,large和small的整体结构一致,区别就是基本单元bneck的个数以及内部参数上,主要是通道数目。 small和large版本参数 上表为具体的参数设置,其中bneck是网络的基本结构。SE代表是否使用通道注意力机制。NL代表激活函数的类型,包括HS(h-swish),RE(ReLU)。NBN 代表没有BN操作。s 是stride...
综合以上,V3的block结构如下所示: 与V2的block相比较: MobileNetV3的网络结构 MobileNetV3定义了两个模型: MobileNetV3-Large和MobileNetV3-Small。V3-Large是针对高资源情况下的使用,相应的,V3-small就是针对低资源情况下的使用。两者都是基于之前的简单讨论的NAS。 MobileNetV3-Large MobileNetV3-Small 就像之前所说...
上图为MobileNetV3的网络结构图,large和small的整体结构一致,区别就是基本单元bneck的个数以及内部参数上,主要是通道数目。 small和large版本参数 上表为具体的参数设置,其中bneck是网络的基本结构。SE代表是否使用通道注意力机制。NL代表激活函数的类型,包括HS(h-swish),RE(ReLU)。NBN 代表没有BN操作。s 是stride...
上图展示了MobileNetV3的网络结构图。large和small的整体结构一致,区别在于基本单元bneck的个数及内部参数,主要体现在通道数目的不同。参数设置如上表所示。bneck是网络的基本结构,SE代表是否使用通道注意力机制,NL代表激活函数类型(HS/h-swish、RE/ReLU),NBN表示没有BN操作,s表示卷积stride操作用于...
解释一下1×1卷积的作用:减少参数,增强非线性表达能力。 三、 MobileNetV3的轻量级的注意力模型、激活函数更新优化 其中加入了SE注意力模块,示意图如下: 在结构中使用了h-swishj激活函数,代替swish函数,减少运算量,提高性能。 MobileNetV3主要有MobileNetV3-Large和MobileNetV3-Small两种不同大小的网络结构。
再看MobileNet-v3,上图为large,下图为small。按照刚刚的思路,这里首先将特征进行Pooling,然后再通过1x1卷积抽取用于训练最后分类器的特征,最后划分到k类。作者的解释是: This final set of features is now computed at 1x1 spatial resolution instead of 7x7 spatial resolution. ...
MobileNetV3是由Google在2019年3月21日提出的网络架构,参考arXiv的论文,其中包括两个子版本,即Large和Small。 源码参考:https://github.com/SpikeKing/mobilenet_v3/blob/master/mn3_model.py 重点: PyTorch实现MobileNetV3架构; h-swish和h-sigmoid的设计; ...