CNN(卷积神经网络)特点1. 局部连接:网络中的神经元仅与部分输入数据相连,减少了参数数量。2. 权重共享:同一层的神经元共享相同的权重,提高了模型的泛化能力。3. 空间不变性:通过卷积操作,模型对输入数据的空间变换具有一定的不变性。应用- 图像识别:如人脸识别、物体检测等。- 视频处理:如动作识别、视频分类等。T...
因此提出了一种基于残差块和多层感知器(MLP)卷积的端到端去噪网络,其由特征提取模块,多路径扩张模块和去噪特征学习模块组成.该网络首先引入特征提取模块来对输入特征进行约束增强处理;然后使用多路径扩张模块捕获局部上下文信息的同时增加感受野;最后利用残差块和MLP卷积进一步捕捉复杂的特征信息以及实现跨通道的信息交互和...
本文的方法可以在ImageNet、语义分割、人脸识别等数据集和相应任务上实现涨点,这些任务输入分辨率各不相同,有的具有平移不变性而有的不具备(本文认为FC和卷积主要的区别就在于是否平移不变);而谷歌的论文只做了几个固定分辨率输入的图像分类实验。 本文提出了一种多层感知机(MLP)模式的图像识别神经网络构造块RepMLP,它...