$ npm install --save ml-regression-simple-linear Usage import { SimpleLinearRegression } from 'ml-regression-simple-linear'; const x = [0.5, 1, 1.5, 2, 2.5]; const y = [0, 1, 2, 3, 4]; const regression = new SimpleLinearRegression(x, y); regression.slope; // 2 regression.int...
$ npm i ml-regression-exponential Usage This calculates parameters A and B for the equationy = B * e^(A * x). import{ExponentialRegression}from'ml-regression-exponential';constx=[0,1,2,3,4];consty=[1.5,2.5,3.5,5.0,7.5];constregression=newExponentialRegression(x,y);regression.A;// ...
资源: Bilibili BV1JE411g7XF http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html Machine Learning 2020, Hung-yi Lee 我已经有两年 ML 经历,这系列课主要用来查缺补漏,会记录一些细节的、自己不知道的东西。 已经有人记了笔记(很用心,强烈推荐): https://github.com/S...李宏毅...
Compare npm package download counts over time to spot trends and see which to use and which to avoid.
$ npm install ml-regression Examples Simple linear regression constSLR=require("ml-regression").SLR;letinputs=[80,60,10,20,30];letoutputs=[20,40,30,50,60];letregression=newSLR(inputs,outputs);regression.toString(3)==="f(x) = - 0.265 * x + 50.6"; ...
$ npm i ml-regression-polynomial Usage import{PolynomialRegression}from'ml-regression-polynomial';constx=[50,50,50,70,70,70,80,80,80,90,90,90,100,100,100];consty=[3.3,2.8,2.9,2.3,2.6,2.1,2.5,2.9,2.4,3.0,3.1,2.8,3.3,3.5,3.0,];constdegree=5;// setup the maximum degree of the po...
$ npm i ml-regression-power Usage This calculates parameters A and B for the equationy = A * x^B. License MIT About Power Regression mljs.github.io/regression-power/ Resources Readme License MIT license Activity Custom properties Stars ...
npm install @stdlib/ml-incr-sgd-regression Alternatively, To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README). If you are using Deno, visit the deno branch (see README for usage intructions). ...
$ npm i ml-pls Usage PLS import PLS from 'ml-pls'; const X = [ [0.1, 0.02], [0.25, 1.01], [0.95, 0.01], [1.01, 0.96], ]; const Y = [ [1, 0], [1, 0], [1, 0], [0, 1], ]; const options = { latentVectors: 10, tolerance: 1e-4, }; const pls = new PLS(...
npm i ml-random-forest API Documentation Usage As classifier importIrisDatasetfrom'ml-dataset-iris';import{RandomForestClassifierasRFClassifier}from'ml-random-forest';consttrainingSet=IrisDataset.getNumbers();constpredictions=IrisDataset.getClasses().map((elem)=>IrisDataset.getDistinctClasses().indexOf(...