Given an array of integers (duplicates are possible), find the minimum number of swaps to sort the array. For [3,9,2,4,2] it should be 2 : [3, 9, 2, 4, 2] -> [2, 9, 3, 4, 2] -> [2, 2, 3, 4, 9] If the elements are distinct then there's a time complexity O...
Can you solve this real interview question? Minimum Operations to Make the Array Increasing - You are given an integer array nums (0-indexed). In one operation, you can choose an element of the array and increment it by 1. * For example, if nums = [1,2
Can you solve this real interview question? Minimum Increment to Make Array Unique - You are given an integer array nums. In one move, you can pick an index i where 0 <= i < nums.length and increment nums[i] by 1. Return the minimum number of moves to m
每次操作可以同时将一个数字+1 另外一个数字-1,问你操作多少次可以让这个数组里面的数字都变成一样的。 那肯定是把所有数字变成最中间那个数字,最快。二. 代码 基本就是一道小学数学题,自己在纸上写出来规律,得出公式,然后用简单的代码把这个公式写了出来。直接看我的代码,那肯定看不懂意思,因为这是自己得出来...
Given an array of n distinct elements, find the minimum number of swaps required to sort the array. Examples: Input : {4, 3, 2, 1} Output : 2 Explanation : Swap index 0 with 3 and 1 with 2 to form the sorted array {1, 2, 3, 4}. ...
Given an array of integers A, amoveconsists of choosing anyA[i], and incrementing it by1. Return the least number of moves to make every value inAunique. Example 1: Input: [1,2,2]Output: 1Explanation: After 1 move, the array could be [1, 2, 3]. ...
class Solution: def minimumMountainRemovals(self, nums: List[int]) -> int: dp_inc = self.lengthOfLIS(nums) dp_dec = self.lengthOfLIS(nums[::-1])[::-1] n = len(nums) res = n for i in range(1, n - …
给你一个二进制数组nums。 你可以对数组执行以下操作任意次(也可以 0 次): 选择数组中任意连续3 个元素,并将它们全部反转。 反转一个元素指的是将它的值从 0 变 1 ,或者从 1 变 0 。 请你返回将nums中所有元素变为 1 的最少操作次数。如果无法全部变成 1 ,返回 -1 。
Minimum Increment to Make Array Unique 使数组唯一的最小增量 排序/计数 leetcode 945. Minimum Increment to Make Array Unique 使数组唯一的最小增量 排序/计数 leetcode 2020年3月 每日一题打卡 题目: 给定整数数组 A,每次 move 操作将会选择任意 A[i],并将其递增 1。返回使 A 中的每个值都是唯一的...
白给白给御坂御坂创建的收藏夹学习。内容:【LeetCode】2809. Minimum Time to Make Array Sum At Most x,如果您对当前收藏夹内容感兴趣点击“收藏”可转入个人收藏夹方便浏览